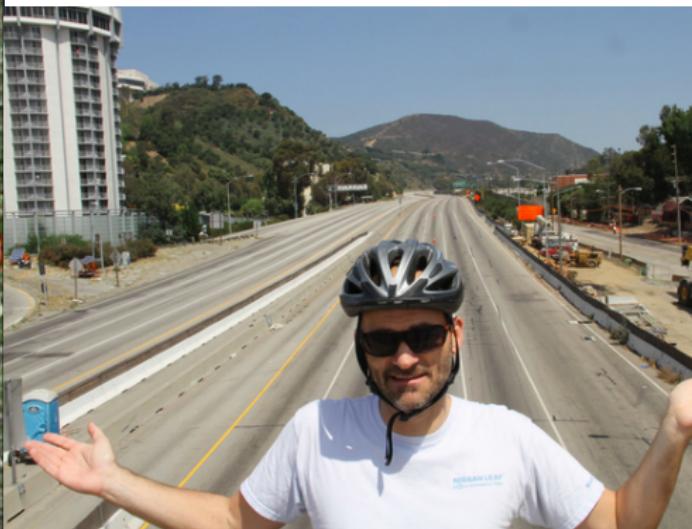


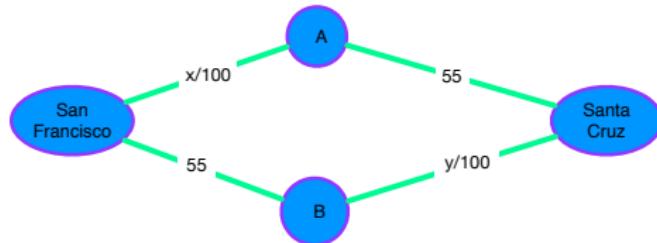
Traffic

Traffic



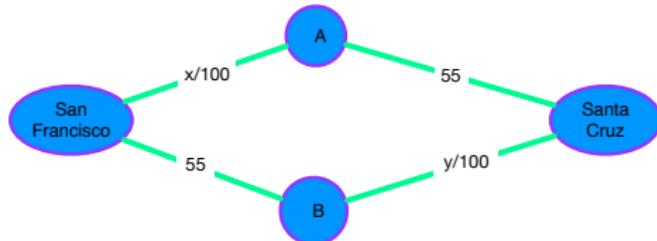
Traffic

Suppose that there were two possibilities for getting from San Francisco to Santa Cruz:



There are 5,000 people that need to get from San Francisco to Santa Cruz each morning.
How should they travel?

Traffic

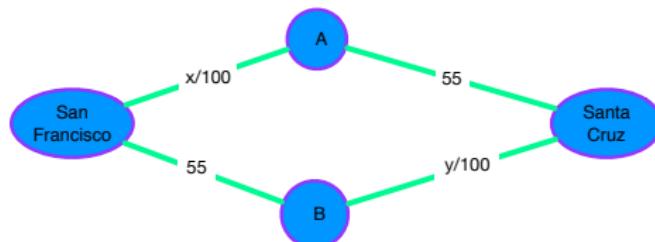


We can think about this network as a game. There are 5,000 players and each have 2 strategies: *A* or *B*.

If 4,000 drivers take route *A* those drivers will have a travel time of 95 minutes. The remaining 1,000 drivers will have a travel time of 65 minutes.

If 2,500 drivers take route *A* and 2,500 drivers take route *B*, the travel time for each driver will be 80 minutes.

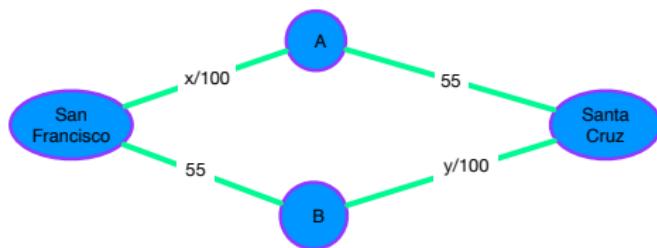
Defining the Payoff Matrix



- Now suppose that there are just two players (drivers).
- The following payoff matrix defines the game:

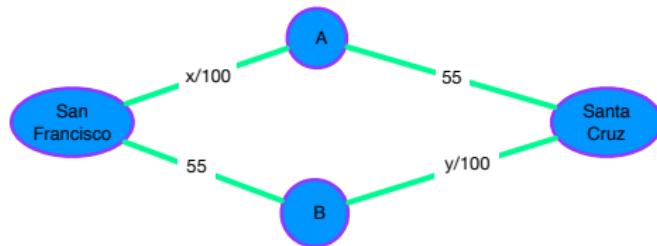
		Driver 2	
		Through A	Through B
Driver 1	Through A	-55.02, -55.02	-55.01, -55.01
	Through B	-55.01, -55.01	-55.02, -55.02

Traffic - Nash Equilibrium



- Is there a Nash equilibrium for this game?
- Any set of strategies for all 5,000 drivers that split the routes in half is a Nash equilibrium. No driver can do better by choosing a different route.

Traffic - Nash Equilibrium

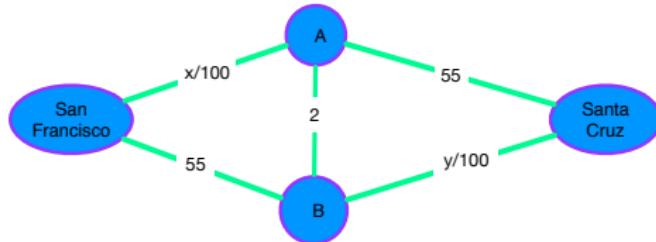


□ How can we make this formal?

- Suppose x people take the route through A and y people take the route through B .
- The travel time for a person on the route through A is $x/100 + 55$.
- The travel time for a person on the route through B is $y/100 + 55$.
- Set these two values equal and solve for x and y . This gives the Nash equilibrium.

Add a road?

Suppose that we added a road to try to help ease congestion:



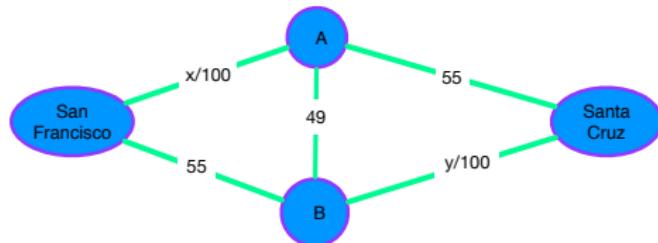
- Now there are four routes.
- Is there a Nash equilibrium here?
 - Yes! Everyone must go to A , along the new road to B . Now everyone's travel time is worse! 102 minutes.
- This is known as Braess's paradox

Braess's paradox

- Named after mathematician Dietrich Braess.

- Adding more paths in networks does not necessarily reduce congestion.
- Shown time and again in the real world. The most vivid example is when a 6 lane highway was shut down in Korea to build a park and commute times decreased.

Traffic - Example with Three Route Equilibria



- What is the Nash equilibria with 1,000 drivers?