
Intro to Python

Theresa Migler-VonDollen
CMPS 5P

1 / 165

Computers and Programs

I A modern computer can be defined as “a machine
that stores and manipulates information under the
control of a changeable program.”

I Two elements:
I Computers are devices for manipulating information.
I Computers operate under the control of a

changeable program.

2 / 165

Computers and Programs

I What is a computer program?
I A detailed, step-by-step set of instructions telling a

computer what to do.
I If we change the program, the computer performs a

di�erent set of actions or a di�erent task.
I The machine stays the same, but the program

changes.
I Programs are executed, or carried out.

3 / 165

Programming

I All computers have the same power, with suitable
programming, i.e. each computer can do the things
any other computer can do.

I Software (programs) rule the hardware (the physical
machine).

I The process of creating this software is called
programming.

4 / 165

Programming

I Why learn to program?
I Fundamental part of computer science
I Having an understanding of programming helps you

have an understanding of the strengths and limitations
of computers.

I Helps you become a more intelligent user of
computers

I It can be fun.
I Helps the development of problem solving skills,

especially in analyzing complex systems by reducing
them to interactions between simpler systems.

I Programmers are in great demand.

5 / 165

What is Computer Science?

I It is NOT the study of computers.
I “Computers are to computer science what telescopes

are to astronomy.” - E. Dijkstra
I The question is: “What can be computed?”

6 / 165

What is Computer Science?

I Design
I One way to show a particular problem can be solved

is to actually design a solution.
I This is done by developing an algorithm, a

step-by-step process for achieving the desired result.
I One problem - it can only answer the question of what

can be computed in the positive. You can’t prove a
negative.

7 / 165

What is Computer Science?

I Analysis
I Analysis is the process of examining algorithms and

problems mathematically.
I Some seemingly simple problems are not solvable by

any algorithm. These problems are said to be
unsolvable.

I Problems can be intractable if they would take too
long or take too much memory to be of practical
value.

8 / 165

What is Computer Science?

I Experimentation
I Some problems are too complex for analysis.
I Implement a system and then study its behavior.

9 / 165

Hardware Basics

The central processing unit (CPU) is the “brain” of a
computer.

I The CPU carries out all the basic operations on the
data.

I Examples: simple arithmetic operations, testing to see
if two numbers are equal.

10 / 165

Hardware Basics

Memory stores programs and data.
I CPU can only directly access information stored in

main memory (RAM or Random Access Memory).
I Main memory is fast, but volatile, i.e. when the power

is interrupted, the contents of memory are lost.
I Secondary memory provides more permanent

storage: magnetic (hard drive, floppy), optical (CD,
DVD)

11 / 165

Hardware Basics

Input devices
I Information is passed to the computer through

keyboards, mice, etc.
Output devices

I Processed information is presented to the user through
the monitor, printer, etc..

12 / 165

Hardware Basics

Fetch-Execute cycle
I First instruction retrieved from memory
I Decode the instruction to see what it represents
I Appropriate action carried out.
I Next instruction fetched, decoded, and executed.
I Repeat.

13 / 165

Programming Languages

Natural language has ambiguity and imprecision
problems when used to describe complex algorithms.

I Programs expressed in an unambiguous, precise way
using programming languages.

I Every structure in programming language has a
precise form, called its syntax.

I Every structure in programming language has a
precise meaning, called its semantics.

14 / 165

Programming Languages

A programming language is like a code for writing the
instructions that the computer will follow.

I Programmers will often refer to their program as
computer code.

I Process of writing an algorithm in a programming
language often called coding.

15 / 165

Programming Languages

High-level computer languages
I Designed to be used and understood by humans

Low-level computer languages
I Computer hardware can only understand a very low

level language known as machine language

16 / 165

Programming Languages

Add two numbers - Low-level
I Load the number from memory location 2001 into the

CPU
I Load the number from memory location 2002 into the

CPU
I Add the two numbers in the CPU
I Store the result into location 2003

In reality, these low-level instructions are represented in
binary (1’s and 0’s)

17 / 165

Binary numbers

I The modern binary number system was discovered by
Gottfried Leibniz in 1679.

I Counting in binary:
I 0 - 0
I 1 - 1
I 2 - 10
I 3 - 11
I 4 - 100
I 5 - 101

I What is 137 in binary?

18 / 165

Programming Languages

Add two numbers -High-level
I c = a + b
I This needs to be translated into machine language

that the computer can execute.
I Compilers convert programs written in a high-level

language into the machine language of some
computer.

19 / 165

Programming Languages

I Interpreters simulate a computer that understands a
high-level language.

I The source program is not translated into machine
language all at once.

I An interpreter analyzes and executes the source code
instruction by instruction.

20 / 165

Programming Languages

Compiling vs Interpreting
I Once program is compiled, it can be executed over

and over without the source code or compiler. If it is
interpreted, the source code and interpreter are
needed each time the program runs.

I Compiled programs generally run faster since the
translation of the source code happens only once.

21 / 165

Programming Languages

Compiling vs Interpreting
I Interpreted languages are part of a more flexible

programming environment since they can be
developed and run interactively

I Interpreted programs are more portable, meaning the
executable code produced from a compiler for a
Pentium won’t run on a Mac, without recompiling. If a
suitable interpreter already exists, the interpreted
code can be run with no modifications.

22 / 165

Python

When you start Python, you will see something like >>>
>>> is called a prompt indicating that Python is ready for
us to give it a command. These commands are called
statements.

23 / 165

Python

Usually we want to execute several statements together
that solve a common problem. Use a function.

I The first line tells Python we are defining a new
function called hello.

I The following lines are indented to show that they are
part of the hello function.

I The blank line (hit enter twice) lets Python know the
definition is finished.

24 / 165

Python

I Notice that nothing has happened yet! We’ve
defined the function, but we haven’t told Python to
perform the function.

I A function is invoked by typing its name.

25 / 165

Python

I What are the “()” for?
I Commands can have changeable parts called

parameters that are placed between the ()’s

26 / 165

Practice with Parameters

Write a Python function that takes in a number as a
parameter and prints the square of that number.

27 / 165

Practice with Parameters

Write a Python function that takes in two numbers as
parameters and prints the sum of the squares of the two
numbers.

28 / 165

Python Programs

I When we exit the Python prompt, the functions we’ve
defined cease to exist.

I Programs are usually composed of functions,
modules, or scripts that are saved on disk so that they
can be used again and again.

I A module file is a text file created in text editing
software (saved as “plain text”) that contains function
definitions.

I A programming environment is designed to help
programmers write programs and usually includes
automatic indenting, highlighting, etc.

29 / 165

Python Programs

I We’ll use filename.py when we save our work to
indicate it’s a Python program.

I In this code we’re defining a new function called
main.

I The main() at the end tells Python to run the code.

30 / 165

Practice with a Python program

Write a Python program that greets the user, and asks for
an input number, call it x . Do the following 10 times:
x = 3.9 ⇤ x ⇤ (1 � x).
Call this program chaos.py

31 / 165

Python comments

I Lines that start with # are called comments
I Intended for human readers and ignored by Python
I Python skips text from # to end of line

32 / 165

Python main function

I Beginning of the definition of a function called main
I Since our program has only this one module, it could

have been written without the main function.
I The use of main is customary, however.

33 / 165

Python variables

I x is an example of a variable
I A variable is used to assign a name to a value so that

we can refer to it later.
I The quoted information is displayed, and the number

typed in response is stored in x.

34 / 165

Python loops

I For is a loop construct
I A loop tells Python to repeat the same thing over and

over.
I In this example, the following code will be repeated

10 times.

35 / 165

Python body

I These lines are the body of the loop.
I The body of the loop is what gets repeated each time

through the loop.
I The body of the loop is identified through indentation.
I The e�ect of the loop is the same as repeating this

two lines 10 times.

36 / 165

Python assignment

I This is called an assignment statement
I The part on the right-hand side of the = is a

mathematical expression.
I ? is used to indicate multiplication
I Once the value on the right-hand side is computed, it

is stored back into (assigned) into x

37 / 165

Python execute main

I This last line tells Python to execute the code in the
function main

38 / 165

Python chaos.py program

I For any given input, returns 10 seemingly random
numbers between 0 and 1.

I It appears that the value of x is chaotic....

39 / 165

The Software Development Process

The process of creating a program is often broken down
into stages according to the information that is produced
in each phase.

I
Analyze the Problem Figure out exactly the problem
to be solved. Try to understand it as much as possible.

I
Determine Specifications Describe exactly what your
program will do.

I Don’t worry about how the program will work, but
what it will do.

I Includes describing the inputs, outputs, and how they
relate to one another.

40 / 165

The Software Development Process

I
Analyze the Problem

I
Determine Specifications

I
Create a Design

I Formulate the overall structure of the program.
I This is where the how of the program gets worked out.
I You choose or develop your own algorithm that meets

the specifications.
I

Implement the Design

I Translate the design into a computer language
(Python).

41 / 165

The Software Development Process

I
Analyze the Problem

I
Determine Specifications

I
Create a Design

I
Implement the Design

I
Test/Debug the Program

I Try out your program to see if it worked.
I If there are any errors (bugs), they need to be located

and fixed. This process is called debugging.
I Your goal is to find errors, so try everything that might

“break” your program!

42 / 165

The Software Development Process

I
Analyze the Problem

I
Determine Specifications

I
Create a Design

I
Implement the Design

I
Test/Debug the Program

I
Maintain the Program

I Continue developing the program in response to the
needs of your users.

I In the real world, most programs are never completely
finished - they evolve over time.

43 / 165

The Software Development Process

I
Analyze the Problem

I
Determine Specifications

I
Create a Design

I
Implement the Design

I
Test/Debug the Program

I
Maintain the Program

Let’s try it!

44 / 165

Temperature Converter

Write a Python program that asks the user for a
temperature in Celcius and tells the user what the
temperature is in Fahrenheit.

45 / 165

Temperature Converter

I
Analyze the Problem

I The temperature is given in Celsius, user wants it
expressed in degrees Fahrenheit.

I
Determine Specifications

I Input - temperature in Celsius
I Output - temperature in Fahrenheit
I Output = 9/5(Input) + 32

46 / 165

Temperature Converter

I
Create a Design

I Input, Process, Output (IPO)
I Prompt the user for input (Celsius temperature)
I Process it to convert it to Fahrenheit using

F = 9/5(C) + 32
I Output the result by displaying it on the screen.

I Before we start coding, let’s write a rough draft of the
program in pseudocode.

I Pseudocode is precise English that describes what a
program does, step by step.

I Using pseudocode, we can concentrate on the
algorithm rather than the programming language.

47 / 165

Temperature Converter

I
Create a Design

I Pseudocode:
I Input the temperature in degrees Celsius (call it celsius)
I Calculate fahrenheit as (9/5)*celsius+32
I Output fahrenheit

48 / 165

Temperature Converter

I
Implement the Design

I
Test the Program

I Does the program work for all numbers? Decimals?
Negative numbers?

I
Maintain the Program

I Do you anticipate any additions a user of this program
might have?

I Perhaps an extra check to see if the temperature is
below freezing?

49 / 165

Elements of the Program

I Names
I Names are given to variables (celsius, fahrenheit),

modules (main, convert), etc.
I These names are called identifiers
I Every identifier must begin with a letter or underscore,

followed by any sequence of letters, digits, or
underscores.

I Identifiers are case sensitive.
I Some identifiers are part of Python itself. These

identifiers are known as reserved words. This means
they are not available for you to use as a name for a
variable, etc. in your program.

I and, del, for, is, raise, assert, elif, in, print, etc.
I For a complete list, see table 2.1

50 / 165

Elements of the Program

I Expressions
I The fragments of code that produce or calculate new

data values are called expressions.
I Literals are used to represent a specific value, e.g. 3.9,

1, 1.0
I Simple identifiers can also be expressions.
I Simpler expressions can be combined using operators.
I +,�, ⇤, /, ⇤⇤
I Spaces are irrelevant within an expression.
I The normal mathematical precedence applies.

51 / 165

Elements of the Program

I Output Statements
I A print statement can print any number of

expressions.
I Successive print statements will display on separate

lines.
I A bare print will print a blank line.

52 / 165

Elements of the Program

I Assignment Statements
I Simple Assignment:

<variable> = <expr>
variable is an identifier, expr is an expression

I The expression on the right-hand side is evaluated to
produce a value which is then associated with the
variable named on the left-hand side.

I For example: fahrenheit = 9/5⇤ celsius +32
I Variables can be reassigned.
I Variables are like a box we can put values in.
I When a variable changes, the old value is erased and

a new one is written in.
NOT exactly

53 / 165

Elements of the Program

I Assignment Statements
I Python doesn’t overwrite these memory locations

(boxes).
I Assigning a variable is more like putting a sticky note

on a value and saying, “this is x”.

54 / 165

Elements of the Program

I Assignment Input
I The purpose of an input statement is to get input from

the user and store it into a variable.
I < variable >= eval(input(< prompt >))
I First the prompt is printed
I The input part waits for the user to enter a value and

press <enter>
I The expression that was entered is evaluated to turn it

from a string of characters into a Python value (a
number).

I The value is assigned to the variable.

55 / 165

Elements of the Program

I Simultaneous Assignment
I Several values can be calculated at the same time.
I < var >,< var >, ... =< expr >,< expr >, ...
I Evaluate the expressions on the right-hand side and

assign them to the variables on the left-hand side.
I sum,di� = x + y , x � y
I How could you use this to swap the values for x and y?

I Why doesn’t this work?
x = y
y = x

I We could use a temporary variable...
I But it’s even easier in Python:

x , y = y , x

56 / 165

Elements of the Program

I Definite Loops
I A definite loop executes a definite number of times,

i.e., at the time Python starts the loop it knows exactly
how many iterations to do.

I for <var> in <sequence>:
<body>

I The beginning and end of the body are indicated by
indentation.

I The variable after the for is called the loop index. It
takes on each successive value in sequence.

I
range is a built-in Python function that generates a
sequence of numbers, starting with 0.

I
list is a built-in Python function that turns the
sequence into an explicit list.

57 / 165

Practice with Future Value Program

Write a Python program that takes an amount of money
(the principal) and an apr and calculates the amount of
the inverstment after 10 years.

58 / 165

Practice with Future Value Program

I
Analysis

I Money deposited in a bank account earns interest.
I How much will the account be worth 10 years from

now?
I Inputs: principal, interest rate
I Output: value of the investment in 10 years

59 / 165

Practice with Future Value Program

I
Specification

I User enters the initial amount to invest, the principal.
I User enters an annual percentage rate, the interest.
I The specifications can be represented like this:

I Program: Future Value
Inputs :
principal: the amount of money being invested, in
dollars
apr: the annual percentage rate expressed as a
decimal number.
Output: The value of the investment 10 years in the
future
Relationship: Value after one year is given by
principal ⇤ (1 + apr). This needs to be done 10 times.

60 / 165

Practice with Future Value Program

I
Design

I Print an introduction
Input the amount of the principal (principal)
Input the annual percentage rate (apr)
Repeat 10 times:
principal = principal ⇤ (1 + apr)
Output the value of principal

61 / 165

Practice with Future Value Program

I
Implementation

I Each line translates to one line of Python (in this case)
I Print an introduction

print ("This program calculates the future value")
print ("value of a 10-year investment.")

I Input the amount of the principal:
principal = eval(input("Enter the initial principal: "))

I Input the annual percentage rate
apr = eval(input("Enter the annual interest rate: "))

I Repeat 10 times: for i in range(10):
I Calculate principal = principal ⇤ (1 + apr)
I Output the value of the principal at the end of 10

years print ("The value in 10 years is:", principal)

62 / 165

Practice with Future Value Program

I
Debug

I
Maintain

I Are there any immediate extensions or improvements
that we can make to our program?

I Calculate the value of the investment for a variable
amount of years.

I Allow for semianual compounding.

63 / 165

Numeric Data Types

I The information that is stored and manipulated by
computer programs is referred to as data.

I In Python, there are two di�erent kinds of numbers:
I Whole numbers: 3, 7, 2094
I Numbers with a decimal: .25, 45.10, 67.0525

I Inside the computer, whole numbers and decimal
fractions are represented quite di�erently.

I We say that decimal fractions and whole numbers
are two di�erent data types.

64 / 165

Numeric Data Types

I The data type of an object determines what values it
can have and what operations can be performed on
it.

I Whole numbers are represented using the integer (int
for short) data type.

I These values can be positive or negative whole
numbers.

I Numbers that can have fractional parts are
represented as floating point (or float) values.

65 / 165

Numeric Data Types

I How do we tell the two data types apart?
I A numeric literal without a decimal point produces an

int value.
I A literal that has a decimal point is represented by a

float (even if the fractional part is 0).
I Python’s type function tell us what type the input is.

66 / 165

Determining Types

Write a Python function that takes any input and returns
the type of that input.

I Notice that the input must be received as a
parameter.

67 / 165

Numeric Data Types

I Why do we need two data types for numbers?
I Values that represent counts can’t be fractional, you

can’t loop 4.5 times.
I Most mathematical algorithms are very e�cient with

integers
I The float type stores only an approximation to the real

number being represented.
I Since floats aren’t exact, use an int whenever possible.
I Operations on ints produce ints, operations on floats

produce floats (except for division).

68 / 165

Numeric Data Types

I Integer division produces a whole number.
I That’s why 10//3 = 3
I Think of it as how many times 3 goes into 10 where

10//3 = 3 because 3 goes into 10 3 times with a
remainder 1.

I 10%3 = 1 is the remainder of the integer division of 10
by 3.

I a = (a/b)(b) + (a%b)

69 / 165

Using the Math Library

I Besides the usual arithmetic functions, there are many
other math functions available in the math library.

I A library is a module with some useful
definitions/functions.

I Suppose we wanted to compute the roots of a
quadratic equation:
ax2 + bx + c = 0

I The square root function is in the math library.

70 / 165

Using the Math Library

I To use a library, we need to make sure this line is in our
program:
import math

I Importing a library makes whatever functions are
defined within it available to the program.

I To access the sqrt library routine, we need to access it
as math.sqrt(x).

I Using this dot notation tells Python to use the sqrt

function found in the math library module.
I To calculate the root:

discRoot = math.sqrt(b?b - 4?a?c)

71 / 165

Practice

Write a program that asks the user for the coe�cients of a
quadratic equation and returns the real roots of the
equation.

I What if the roots are imaginary?

72 / 165

Generating Random Numbers

I
random is another useful library.

I
random.randint(x,y) generates a random integer
between (inclusive) x and y.

I Lets test to see if each number in the range is equally
likely to be generated.

Write a program that generates 1000 random integers
between 1 and 3 and counts the occurence of each
number.

I Is this what we would expect?

73 / 165

Accumulating Results

I Say you are waiting in a line with five other people.
How many ways are there to arrange the six people?

I 720 – 720 is the factorial of 6 (abbreviated 6!).
I Factorial is defined as: n! = n(n � 1)(n � 2)...(1)
I So, 6! = 6 ⇤ 5 ⇤ 4 ⇤ 3 ⇤ 2 ⇤ 1 = 720
I How could we write a program to do this?

74 / 165

Accumulating Results

Write a Python program that takes an integer, x , and prints
the factorial x!.

75 / 165

Accumulating Results

I How did we calculate 6!?
I Using repeated multiplications, and keeping track of

the running product.
I This algorithm is known as an accumulator, because

we’re building up or accumulating the answer in a
variable, known as the accumulator variable.

I The general form of an accumulator algorithm looks
like this:
Initialize the accumulator variable
Loop until final result is reached update the value of
accumulator variable

76 / 165

The range Function - Generalizing Factorials

I What if we want to generalize our factorial program?
I The range(n) function can do this.
I

range has optional parameters:
range(start,n)

range(start,n,step)

77 / 165

Factorials Get Large - Fast

I What is 100!?
I That’s huge, Python 3 can handle it, but previous

versions and other languages cannot.
I While there are an infinite number of integers, there is

a finite range of ints that can be represented.

78 / 165

Limits on Int

I This range of integers that can be represented
depends on the number of bits a particular CPU uses
to represent an integer value.

I Typical PCs use 32 bits.
I That means there are 232 possible values, centered at

0.
I This range then is -231 to 231-1. We need to subtract

one from the top end to account for 0.
I But our 100! is much larger than this. How does it

work?

79 / 165

Handling Large Numbers

I Does switching to float data types get us around the
limitations of ints?

I If we initialize the accumulator to 1.0, what do we
get?

I We no longer get an exact answer!
I Very large and very small numbers are expressed in

scientific or exponential notation.
1.307674368e + 012 = 1.307674368 ⇥ 1012

I Here the decimal needs to be moved right 12
decimal places to get the original number, but there
are only 9 digits, so 3 digits of precision have been lost.

80 / 165

Handling Large Numbers

I Floats are approximations.
I Floats allow us to represent a larger range of values,

but with lower precision.
I Python has a solution, expanding ints.
I Python ints are not a fixed size and expand to handle

whatever value it holds.
I Newer versions of Python automatically convert your

ints to expanded form when they grow so large as to
overflow.

I We get indefinitely large values (e.g. 100!) at the cost
of speed and memory.

81 / 165

Type Conversions

I We know that combining an int with an int produces
an int, and combining a float with a float produces a
float.

I What happens when you mix an int and float in an
expression?
x = 5.0 + 2

I What do you think should happen?
I For Python to evaluate this expression, it must either

convert 5.0 to 5 and do an integer addition, or
convert 2 to 2.0 and do a floating point addition.

82 / 165

Type Conversions

I Converting a float to an int will lose information.
I ints can be converted to floats by adding “.0”
I In mixed-typed expressions Python will convert ints to

floats.
I Sometimes we want to control the type conversion.

This is called explicit typing.
I For example:

I
int(4.5)

I
float(7)

I We can also round using the round function.
I What is the di�erence between int(8.9) and

round(8.9)?

83 / 165

Fizz-buzz

I Write a program which prints out each number from 1
to 1,000.

I For all numbers divisible by 3 only print the word “fizz”,
not the number.

I For all numbers divisible by 5 only print the word
“buzz”, not the number.

I For all numbers divisible by 3 and 5 print only the word
“fizzbuzz”.

84 / 165

The String Data Type

I The most common use of personal computers is word
processing.

I Text is represented in programs by the string data type.
I A string is a sequence of characters enclosed within

quotation marks or apostrophes.
I How do we get a string as input?

85 / 165

The String Data Type

I We can access the individual characters in a string
through indexing.

I The positions in a string are numbered from the left,
starting with 0.

I The general form is <string> [<expr>], where the
value of expr determines which character is selected
from the string.

I In a string of n characters, the last character is at
position n � 1 since we start counting with 0.

I We can index from the right side using negative
indexes.

86 / 165

The String Data Type

I Indexing returns a string containing a single character
from a larger string.

I We can also access a contiguous sequence of
characters, called a substring, through a process
called slicing.

I Slicing: <string> [<start>:<end>]

I start and end should both be ints.
I The slice contains the substring beginning at position

start and runs up to but doesn’t include the position
end.

87 / 165

The String Data Type

I Can we put two strings together into a longer string?
I Concatenation “glues” two strings together +.
I Repetition builds up a string by multiple

concatenations of a string with itself ?.
I The function len returns the length of a string.

88 / 165

Simple String Processing

Write a Python program that asks the user for her first and
last name and then prints a username. The username
should be the first initial of the first name and the first
seven characters of the last name.

I Can we make the username lowercase?
I Can we exclude punctuation?

89 / 165

Other String Methods

I There are a number of other string methods:
I s.capitalize() - Copy of s with only the first character

capitalized.
I s.title() - Copy of s; first character of each word

capitalized.
I s.center(width) - Center s in a field of given width.
I s.count(sub) - Count the number of occurrences of

sub in s.
I s.find(sub) - Find the first position where sub occurs in s.
I s.join(list) - Concatenate list of strings into one large

string using s as separator.
I s.ljust(width) - Like center, but s is left- justified.

90 / 165

Other String Methods

I There are a number of other string methods:
I s.lower() - Copy of s in all lowercase letters
I s.lstrip() - Copy of s with leading whitespace removed
I s.replace(oldsub, newsub) - Replace occurrences of

oldsub in s with newsub
I s.rfind(sub) - Like find, but returns the right-most position
I s.rjust(width) - Like center, but s is right- justified
I s.rstrip() - Copy of s with trailing whitespace removed
I s.split() - Split s into a list of substrings
I s.upper() - Copy of s; all characters converted to

uppercase

91 / 165

Improved Username

Modify the username program so that the username is all
lowercase with no punctuation.

I Hint: Use the string library and string.punctuation.

92 / 165

Simple String Processing

Write a Python program that asks for an int between 1 and
12 and returns the three letter abbreviation for the
corresponding month.

I Hint: store all the names in one big string:
“JanFebMarAprMayJunJulAugSepOctNovDec” and
slice.

I One weakness - this method only works where the
potential outputs all have the same length.

I How could you handle spelling out the months?

93 / 165

Strings, Lists, and Sequences

I It turns out that strings are really a special kind of
sequence, so these operations also apply to
sequences.

I Strings are always sequences of characters, but lists
can be sequences of arbitrary values.

I Lists can have numbers, strings, or both.
I We can use the idea of a list to make our previous

month program even simpler.
I We change the lookup table for months to a list.

94 / 165

Strings, Lists, and Sequences

I Lists are mutable, meaning they can be changed.
I Strings can not be changed.
I Inside the computer, strings are represented as

sequences of 1’s and 0’s, just like numbers.
I A string is stored as a sequence of binary numbers,

one number per character.
I It doesn’t matter what value is assigned as long as it’s

done consistently.

95 / 165

Strings, Lists, and Sequences

I In the early days of computers, each manufacturer
used their own encoding of numbers for characters.

I ASCII system (American Standard Code for
Information Interchange) uses 127 bit codes.

I Python supports Unicode (100,000+ characters).
I The ord function returns the numeric (ordinal) code of

a single character.
I The chr function converts a numeric code to the

corresponding character.
I Using ord and char we can convert a string into and

out of numeric form.

96 / 165

Strings, Lists, and Sequences

Write a “secret code” program.
For each character in a message print the corresponding
number of the character.

I Hint: a for loop iterates over a sequence of objects,
so the for loop looks like:
for ch in <string>.

97 / 165

Strings, Lists, and Sequences

I Strings are objects that have useful methods
associated with them.

I One of these methods is split. This will split a string into
substrings based on spaces.

I Example:
>>> “Hello string methods!”.split()
[’Hello’, ’string’, ’methods!’]

I Split can be used on characters other than space, by
supplying the character as a parameter.

98 / 165

Strings, Lists, and Sequences

Now write a decoder.
I Hint: Convert a string containing digits into a number

by using eval.
I Hint: Use a string accumulator variable, initialize as the

empty string, ” ”.

99 / 165

From Encoding to Encryption

I The process of encoding information for the purpose
of keeping it secret or transmitting it privately is called
encryption.

I Cryptography is the study of encryption methods.
I Encryption is used when transmitting credit card and

other personal information to a web site.
I Strings are represented as a sort of encoding problem,

where each character in the string is represented as a
number that’s stored in the computer.

I The code that is the mapping between character and
number is an industry standard, so it’s not “secret”.

100 / 165

From Encoding to Encryption

I The encoding/decoding programs we wrote use a
substitution cipher, where each character of the
original message, known as the plaintext, is replaced
by a corresponding symbol in the cipher alphabet.

I The resulting code is known as the ciphertext.
I This type of code is relatively easy to break.
I Each letter is always encoded with the same symbol,

so using statistical analysis on the frequency of the
letters and trial and error, the original message can be
determined.

101 / 165

From Encoding to Encryption

I Modern encryption converts messages into numbers.
I Sophisticated mathematical formulas convert these

numbers into new numbers - usually this
transformation consists of combining the message
with another value called the “key”

I To decrypt the message, the receiving end needs an
appropriate key so the encoding can be reversed.

102 / 165

From Encoding to Encryption

I In a private key system the same key is used for
encrypting and decrypting messages. Everyone you
know would need a copy of this key to communicate
with you, but it needs to be kept a secret.

I In public key encryption, there are separate keys for
encrypting and decrypting the message.

I In public key systems, the encryption key is made
publicly available, while the decryption key is kept
private.

I Anyone with the public key can send a message, but
only the person who holds the private key (decryption
key) can decrypt it.

103 / 165

Input/Output as String Manipulation

Write a Python program that takes a date in numeric
format and prints the same date in words.
For example: we want to enter a date in the format
“05/24/2003” and print “May 24, 2003”.

104 / 165

Input/Output as String Manipulation

I Sometimes we want to convert a number into a string.
I We can use the str function.
I If value is a string, we can concatenate a period onto

the end of it.
I If value is an int, what happens?

105 / 165

Files: Multi-line Strings

I A file is a sequence of data that is stored in secondary
memory.

I Files can contain any data type, but the easiest to
work with are text.

I A file usually contains more than one line of text.
I Python uses the standard newline character (\n) to

mark line breaks.

106 / 165

Files: Multi-line Strings

I Hello
World

Goodbye
I Stored in a file as:

Hello\nWorld\n\nGoodbye\n

107 / 165

Files: Multi-line Strings

I The process of opening a file involves associating a file
on disk with an object in memory.

I We can manipulate the file by manipulating this
object.

I Read from the file
I Write to the file

I When done with the file, it needs to be closed.
Closing the file causes any outstanding operations
and other bookkeeping for the file to be completed.

I In some cases, not properly closing a file could result
in data loss.

108 / 165

Files Processing

I Working with text files in Python:
I Associate a disk file with a file object using the open

function <filevar>=open(<name>, <mode>)
I Name is a string with the actual file name on the disk.

The mode is either ’r’ or ’w’ depending on whether we
are reading or writing the file.

I Infile = open(“numbers.dat”, “r”)

109 / 165

Files Methods

I <file>.read() - returns the entire remaining contents of
the file as a single (possibly large, multi-line) string.

I <file>.readline() - returns the next line of the file. This is
all text up to and including the next newline
character.

I <file>.readlines() - returns a list of the remaining lines
in the file. Each list item is a single line including the
newline characters.

110 / 165

Read in a Book

I Go to http://www.gutenberg.org, download a book
as plain text, copy and paste it into a text editor, and
save it as a .txt file.

I Write a Python program that reads in the text file and
prints the word count and average word length.

111 / 165

Functions

We have seen 3 types of functions:
I Our programs that comprise a single function.
I Built-in Python functions (abs, round, +).
I Functions from standard libraries (math.sqrt).

112 / 165

Functions

I Having similar or identical code in multiple places has
drawbacks:

I Having to write the same code multiple times (time
consuming).

I The code must be maintained in multiple places.
I Functions can be used to reduce code duplication

and make programs more easily understood and
maintained.

113 / 165

Functions

I How to use functions:
I Write a sequence of statements and then give that

sequence a name.
I Execute this sequence at any time by referring to the

name.
I The part of the program that creates a function is

called a function definition.
I When the function is used in a program, we say the

definition is called or invoked.

114 / 165

Functions - Example

Write a program to sing the “happy birthday” song to
Molly.

I There are a lot of duplicate print statements. We can
make these duplicate statements into a little function
named “happy”.

I Now write a program to sing the “happy birthday”
song to Andrew.

I There is still a lot of duplication. Perhaps use a
parameter.

115 / 165

Functions and Parameters

I A function definition has the following form:
def <name>(<parameters>):

<body>
I The name of the function must be an identifier.
I parameters is a possibly empty list of variable names.
I Formal parameters, like all variables used in the

function, are only accessible in the body of the
function. Variables with identical names elsewhere in
the program are distinct from the formal parameters
and variables inside of the function body.

116 / 165

Functions and Parameters

I A function is called by using its name followed by a list
of actual parameters or arguments:
<name>(<actual-parameters>):

I When Python comes to a function call, it initiates a
four-step process:

I The calling program suspends execution at the point
of the call.

I The formal parameters of the function get assigned the
values supplied by the actual parameters in the call.

I The body of the function is executed.
I Control returns to the point just after where the

function was called.

117 / 165

Getting Results from a Function

I Passing parameters provides a mechanism for
initializing the variables in a function.

I Parameters act as inputs to a function.
I We can call a function many times and get di�erent

results by changing its parameters.
I We’ve already seen numerous examples of functions

that return values to the caller.
discRt = math.sqrt(b ⇤ b � 4 ⇤ a ⇤ c)

I The value b ⇤ b � 4 ⇤ a ⇤ c is the actual parameter of
math.sqrt.

I We say sqrt returns the square root of its argument.

118 / 165

Simple Program with Return

Write a Python program that accepts two points (ordered
pairs) as parameters and returns the Euclidean distance
between those points.

119 / 165

Getting Results from a Function

I When Python encounters return, it exits the function
and returns control to the point where the function
was called.

I In addition, the value(s) provided in the return
statement are sent back to the caller as an expression
result.

120 / 165

Getting Results from a Function

I Sometimes a function needs to return more than one
value.

I To do this, simply list more than one expression in the
return statement.

Write a Python function that takes two numbers and
returns their sum and product.

I When calling a function that returns more than one
expression, use simultaneous assignment.

121 / 165

Getting Results from a Function

I Note: all Python functions return a value, whether they
contain a return statement or not. Functions without a
return hand back a special object, denoted None.

I A common problem is writing a value-returning
function and omitting the return.

122 / 165

Functions that Modify Parameters

I The formal parameters of a function only receive the
values of the actual parameters. The function does
not have access to the variable that holds the actual
parameter.

I Python is said to pass all parameters by value.
I Some programming languages (C++, Ada, and many

more) do allow variables themselves to be sent as
parameters to a function. This mechanism is said to
pass parameters by reference.

I When a new value is assigned to the formal
parameter, the value of the variable in the calling
program actually changes.

123 / 165

Functions and Program Structure

I So far, functions have been used as a mechanism for
reducing code duplication.

I Another reason to use functions is to make your
programs more modular.

I As the algorithms you design get increasingly
complex, it gets more and more di�cult to make
sense out of the programs.

I One way to deal with this complexity is to break an
algorithm down into smaller subprograms, each of
which makes sense on its own.

124 / 165

Data Collection

I Many programs deal with large collections of similar
information.

I Words in a document
I Students in a course
I Data from an experiment

I Recall the programming assignment where we asked
the user to input grades and we returned the
average.

I That program didn’t keep track of the actual numbers,
just the sum.

I What if we also wanted to compute the median?

125 / 165

Computing the Median

I The median is the data value that splits the data into
equal-sized parts.

I For the data 1, 4, 5, 9, 42, the median is 5, since there
are two values greater than 5 and two values that are
smaller.

I One way to determine the median is to store all the
numbers, sort them, and identify the middle value.

126 / 165

Computing the Median

I We need a way to store and manipulate an entire
collection of numbers.

I Can we just use a lot of variables?
I No, because we don’t know how many we will need

at the start.
I We need some way of combining an entire collection

of values into one object.

127 / 165

Lists and Arrays

I Recall that Python lists are ordered sequences of
items.

I A list or array is a sequence of items where the entire
sequence is referred to by a single name and
individual items can be selected by indexing.

I In other programming languages, arrays are generally
a fixed size, meaning that when you create the array,
you have to specify how many items it can hold.

I Arrays are generally also homogeneous, meaning
they can hold only one data type.

128 / 165

Lists and Arrays

I Python lists are dynamic. They can grow and shrink on
demand.

I Python lists are also heterogeneous, a single list can
hold arbitrary data types.

I Python lists are mutable sequences of arbitrary
objects.

129 / 165

Lists Operations

I Aside from all of the list operations that we have
already seen, there is also the membership operation.

I
3 in ourList

I Practice with:
I

ourList.reverse()

I
ourList.sort()

I
ourList.count(2)

I
ourList.insert(5,’Thanks!’)

I
ourList.remove(7)

130 / 165

Lists Operations

I Most of these methods don’t return a value - they
change the contents of the list in some way.

I Lists can grow by appending new items, and shrink
when items are deleted. Individual items or entire
slices can be removed from a list using the del

operator.

131 / 165

Statistics with Lists

Write a Python program that takes a list of numbers and
calculates the mean and median.

I If the list has odd length, the middle value in the list is
the median.

I If the list has even length, the median is the average
of the middle two values.

132 / 165

Lists of Objects

I All of the list examples we’ve looked at so far have
involved simple data types like numbers and strings.

I We can also use lists to store more complex data
types.

133 / 165

Practice with lists

Write a Python function that takes a list and removes all
duplicate values from the list.

134 / 165

Algorithms

Write a Python function that accepts a list of numbers and
a number, x . If x is in the list, the function returns the
position in the list where that number appears. If x is not in
the list, the function returns the value -1.

I Note that this is very similar to the built in function
index, except that it handles exceptions.

I However, we are interested in how the search is
actually performed.

135 / 165

Linear Search

I Suppose that you are given a list of 1,000 numbers
(unsorted) and you are asked to find a particular
number.

I How would you do this?
I Scan the whole list.

I This strategy, scanning a list one by one, is called
linear search.

I This strategy works well for modest-sized lists.
I Both in and index use linear searching algorithms.

136 / 165

Linear Search

I Now suppose that the list of number is sorted (low to
high).

I Do we still need to scan the list one by one?
I How would you do it?
I You could scan until you find a number that is greater

than x .
I On average this will save half the time from our

previous algorithm.

137 / 165

Binary Search

I How would you find x in a sorted list of 1,000 numbers?

I You would probably look at the middle number in the
list and compare it with x , then throw half the list away.

I This strategy is called binary search. At each step, we
divide the list into two parts and throw away one of
the parts.

138 / 165

Binary Search

I Since x could be anywhere in the list, we start with low

as the first location in the list and high as the last
location in the list.

I This algorithm will look at the middle element in the
range and compare it to x .

I If x is larger than the middle element, we move low to
be the location of the middle element.

I If x is smaller than the middle element, we move high

to be the location of the middle element.

139 / 165

Binary Search

Write a Python function, using binary search, that accepts
a list of numbers and a number, x . If x is in the list, the
function returns the position in the list where that number
appears. If x is not in the list, the function returns the value
-1.

140 / 165

Comparing Algorithms

I Which algorithm is better?
I Which algorithm is easier to understand and

implement?
I Which algorithm runs faster?

I Intuitively, we might expect linear search to work well
on small lists while binary search would work better on
longer lists.

I We could test empirically.
I We could argue abstractly.

141 / 165

Comparing Algorithms

I To argue abstractly, we need to test the number of
“steps”.

I For searching, the di�culty is determined by the size of
the collection - it takes more steps to find a number in
a collection of a million numbers than it does in a
collection of 10 numbers.

I How many steps are needed to find a value in a list of
size n?

I In particular, what happens as n gets very large?

142 / 165

Comparing Algorithms

I Linear search:
I If the list has size n, we would have to loop through at

most n items.
I The amount of time required is linearly related to the

size of the list.
I This is what computer scientists call a linear time

algorithm.
I Binary search:

I If the list has size n, we would need to loop through at
most log2(n) items.

I This is what computer scientists call a log time
algorithm.

143 / 165

Comparing Algorithms

I The logarithmic property can be very helpful.
I Suppose you have a New York City phone book with

12 million names.
I You could walk up to a random New Yorker (that is

listed in the phone book) and try guessing her name.
I All you are allowed to do is ask if her name is

alphabetically before or after one that you find in the
phone book.

I How many guesses will you need?
I log2 12000000 ⇡ 24
I If you had used linear search it would be closer to 6

million!

144 / 165

Comparing Algorithms

I We mentioned earlier that Python uses linear search in
its built-in searching methods. Why?

I Binary search required the data to be sorted.
I If the data is unsorted, it must first be sorted, then

searched.

145 / 165

Recursive Problem-Solving

I The basic idea between the binary search algorithm
was to successfully divide the problem in half.

I This technique is known as a divide and conquer
approach.

I Divide and conquer divides the original problem into
subproblems that are smaller versions of the original
problem.

I In the binary search, the initial range is the entire list.
We look at the middle element... if it is the target,
we’re done. Otherwise, we continue by performing a
binary search on either the top half or bottom half of
the list.

146 / 165

Recursive Problem-Solving

Write a Python function that calls itself to perform binary
search.

I This version has no loop!

147 / 165

Recursive Problem-Solving

I A description of something that refers to itself is called
a recursive definition.

I Unlike English, where you cannot use a word to define
itself, in mathematics recursive definitions are
common.

I An example of a recursive mathematical definition,
revisit the factorial:

I We know that n! = n(n � 1)(n � 2) . . . (3)(2)(1).
I But we could also say: n! = (n)((n � 1)!)

148 / 165

Recursive Problem-Solving

I Is this definition of factorial circular?
I No, because there is a base case: 1! = 1

Write a Python function that recursively computes the
factorial of a given number.

149 / 165

Recursive Problem-Solving

I Good recursive definitions have these two key
characteristics:

I There is one (or more) base case for which no
recursion is applied.

I All chains of recursion eventually end up at one of the
base cases.

I The simplest way for these two conditions to occur is
for each recursion to act on a smaller version of the
original problem. A very small version of the original
problem that can be solved without recursion
becomes the base case.

150 / 165

Recursive Problem-Solving

I Python lists have built in methods that can be used to
reverse a list.

I Suppose we wanted to reverse a string? recursively?

Write a recursive Python function that takes in a string as a
parameter and returns the string with all characters in
reversed order.

I Don’t forget the base case! Here it is the empty string.

151 / 165

Anagrams

I An anagram is the result of rearranging the letters of a
word or phrase to produce a new word or phrase,
using all the original letters exactly once.

I An example is “silent” and “listen”.
I Anagram formation is a special case of generating all

permutations (rearrangements) of a sequence, a
problem that is seen frequently in mathematics and
computer science.

152 / 165

Anagrams

Write a Python function that, given a word, returns a list
with all possible permutations of that word.

I Hint: Suppose we already had all permutations of the
word without the first letter. How could we use this to
find all permutations of the whole word?

I How many permutations of a word of length n are
there?

153 / 165

Recursion versus Iteration

I There are similarities between iteration (looping) and
recursion.

I In fact, anything that can be done with a loop can
be done with a simple recursive function.

I Some problems that are simple to solve with recursion
are quite di�cult to solve with loops.

I Often, recursive solutions are more e�cient than their
iterative counterparts. But not always...

154 / 165

Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, ...

Write an iterative Python program that takes an integer, x ,
as an input and returns a list with the first x Fibonacci
numbers.

Write a recursive Python program that takes an integer, x ,
as an input and returns a list with the first x Fibonacci
numbers.

155 / 165

Recursion versus Iteration

I Which program runs faster?
I The recursive algorithm is extremely ine�cient

because it performs many duplicate calculations.
I Recursion is another tool in your problem-solving

toolbox.
I Sometimes recursion provides a good solution

because it is more elegant or e�cient than a looping
version.

I At other times, when both algorithms are quite similar,
the edge goes to the looping solution on the basis of
speed.

156 / 165

Sorting Algorithms

I Suppose you are given a list of numbers in arbitrary
order and your task is to rearrange them in increasing
order.

I How would you do this?
I One simple (and correct) method is to look through

the entire list and find the smallest element, then look
through the entire remaining portion of the list for the
second smallest element....

I This algorithm is called selection sort.
I Is this an e�cient algorithm?

157 / 165

Selection Sort

Write a Python program that takes as an input a list of
numbers and returns the same list in sorted (increasing)
order using the selection sort algorithm.

158 / 165

Mergesort

I Suppose that you and your friend needed to sort a
deck of cards quickly.

I You might split the deck in half, and each sort your
half, then combine the two decks.

I This is a divide and conquer approach.
I This algorithm is called mergesort.
I Practice with an example on the board.

159 / 165

Mergesort

Write a Python program that correctly merges two sorted
lists.

Write a Python program that takes as an input a list of
numbers and returns the same list in sorted (increasing)
order using the mergesort algorithm.

160 / 165

Selection Sort versus Mergesort

I Which algorithm should we use?
I Certainly, the time it takes to sort the list depends on

the size of the list.
I The question is: How many steps does each algorithm

require as a function of the size of the list being
sorted?

I Suppose that we have n items in our list.

161 / 165

Running Time Analysis of Selection Sort

I For the first step, in the worst case, we need to look
through all n items.

I For the second step, we might need to look through
all remaining n � 1 items.

I The total number of iterations is:
n + (n � 1) + (n � 2) + (n � 3) + · · ·+ 2 + 1 = n(n+1)

2
I So the running time is proportional to n2.
I We call this a quadratic algorithm.

162 / 165

Running Time Analysis of Mergesort

I For Mergesort, the place where the real sorting occurs
is in the merge function.

I Practice sorting [3, 1, 4, 1, 5, 9, 2, 6].
I Starting from the top, we have to copy n values into

the second level.
I From the second to the third levels, the n values need

to be copied again.
I Each level requires copying n values....How many

levels are there?
I log2 n.

I Therefore the total work required is n log n. This is
called an n log n algorithm.

163 / 165

Comparing Quadratic and n log n Algorithms

164 / 165

Hard Problems

I There are some problems for which there is no known
fast algorithm.

I The best we can seem to do on some problems is an
exponential algorithm.

I What do computer scientists do when they encounter
such problems?

165 / 165

	Computers and Programs
	Writing Simple Programs
	Computing with Numbers
	Objects and Graphics
	Sequences: Strings, Lists, and Files
	Functions
	Data Collections
	Algorithms

