
Computing with
Numbers

Theresa Migler-VonDollen
CMPS 5P

1 / 22



 

Numeric Data Types

I The information that is stored and manipulated by
computer programs is referred to as data.

I In Python, there are two different kinds of numbers:
I Whole numbers: 3, 7, 2094
I Numbers with a decimal: .25, 45.10, 67.0525

I Inside the computer, whole numbers and decimal
fractions are represented quite differently.

I We say that decimal fractions and whole numbers
are two different data types.

2 / 22



 

Numeric Data Types

I The data type of an object determines what values it
can have and what operations can be performed on
it.

I Whole numbers are represented using the integer (int
for short) data type.

I These values can be positive or negative whole
numbers.

I Numbers that can have fractional parts are
represented as floating point (or float) values.

3 / 22



 

Numeric Data Types

I How do we tell the two data types apart?
I A numeric literal without a decimal point produces an

int value.
I A literal that has a decimal point is represented by a

float (even if the fractional part is 0).
I Python’s type function tell us what type the input is.

4 / 22



 

Determining Types

Write a Python function that takes any input and returns
the type of that input.

I Notice that the input must be received as a
parameter.

5 / 22



 

Numeric Data Types

I Why do we need two data types for numbers?
I Values that represent counts can’t be fractional, you

can’t loop 4.5 times.
I Most mathematical algorithms are very efficient with

integers
I The float type stores only an approximation to the real

number being represented.
I Since floats aren’t exact, use an int whenever possible.
I Operations on ints produce ints, operations on floats

produce floats (except for division).

6 / 22



 

Numeric Data Types

I Integer division produces a whole number.
I That’s why 10//3 = 3
I Think of it as how many times 3 goes into 10 where

10//3 = 3 because 3 goes into 10 3 times with a
remainder 1.

I 10%3 = 1 is the remainder of the integer division of 10
by 3.

I a = (a/b)(b) + (a%b)

7 / 22



 

Using the Math Library

I Besides the usual arithmetic functions, there are many
other math functions available in the math library.

I A library is a module with some useful
definitions/functions.

I Suppose we wanted to compute the roots of a
quadratic equation:
ax2 + bx + c = 0

I The square root function is in the math library.

8 / 22



 

Using the Math Library

I To use a library, we need to make sure this line is in our
program:
import math

I Importing a library makes whatever functions are
defined within it available to the program.

I To access the sqrt library routine, we need to access it
as math.sqrt(x).

I Using this dot notation tells Python to use the sqrt
function found in the math library module.

I To calculate the root:
discRoot = math.sqrt(b?b - 4?a?c)

9 / 22



 

Practice

Write a program that asks the user for the coefficients of a
quadratic equation and returns the real roots of the
equation.

I What if the roots are imaginary?

10 / 22



 

Generating Random Numbers

I random is another useful library.
I random.randint(x,y) generates a random integer

between (inclusive) x and y.
I Lets test to see if each number in the range is equally

likely to be generated.

Write a program that generates 1000 random integers
between 1 and 3 and counts the occurence of each
number.

I Is this what we would expect?

11 / 22



 

Accumulating Results

I Say you are waiting in a line with five other people.
How many ways are there to arrange the six people?

I 720 – 720 is the factorial of 6 (abbreviated 6!).
I Factorial is defined as: n! = n(n − 1)(n − 2)...(1)
I So, 6! = 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 720
I How could we write a program to do this?

12 / 22



 

Accumulating Results

Write a Python program that takes an integer, x , and prints
the factorial x!.

13 / 22



 

Accumulating Results

I How did we calculate 6!?
I Using repeated multiplications, and keeping track of

the running product.
I This algorithm is known as an accumulator, because

we’re building up or accumulating the answer in a
variable, known as the accumulator variable.

I The general form of an accumulator algorithm looks
like this:
Initialize the accumulator variable
Loop until final result is reached update the value of
accumulator variable

14 / 22



 

The range Function - Generalizing Factorials

I What if we want to generalize our factorial program?
I The range(n) function can do this.
I range has optional parameters:

range(start,n)
range(start,n,step)

15 / 22



 

Factorials Get Large - Fast

I What is 100!?
I That’s huge, Python 3 can handle it, but previous

versions and other languages cannot.
I While there are an infinite number of integers, there is

a finite range of ints that can be represented.

16 / 22



 

Limits on Int

I This range of integers that can be represented
depends on the number of bits a particular CPU uses
to represent an integer value.

I Typical PCs use 32 bits.
I That means there are 232 possible values, centered at

0.
I This range then is -231 to 231-1. We need to subtract

one from the top end to account for 0.
I But our 100! is much larger than this. How does it

work?

17 / 22



 

Handling Large Numbers

I Does switching to float data types get us around the
limitations of ints?

I If we initialize the accumulator to 1.0, what do we
get?

I We no longer get an exact answer!
I Very large and very small numbers are expressed in

scientific or exponential notation.
1.307674368e + 012 = 1.307674368× 1012

I Here the decimal needs to be moved right 12
decimal places to get the original number, but there
are only 9 digits, so 3 digits of precision have been lost.

18 / 22



 

Handling Large Numbers

I Floats are approximations.
I Floats allow us to represent a larger range of values,

but with lower precision.
I Python has a solution, expanding ints.
I Python ints are not a fixed size and expand to handle

whatever value it holds.
I Newer versions of Python automatically convert your

ints to expanded form when they grow so large as to
overflow.

I We get indefinitely large values (e.g. 100!) at the cost
of speed and memory.

19 / 22



 

Type Conversions

I We know that combining an int with an int produces
an int, and combining a float with a float produces a
float.

I What happens when you mix an int and float in an
expression?
x = 5.0+ 2

I What do you think should happen?
I For Python to evaluate this expression, it must either

convert 5.0 to 5 and do an integer addition, or
convert 2 to 2.0 and do a floating point addition.

20 / 22



 

Type Conversions

I Converting a float to an int will lose information.
I ints can be converted to floats by adding “.0”
I In mixed-typed expressions Python will convert ints to

floats.
I Sometimes we want to control the type conversion.

This is called explicit typing.
I For example:

I int(4.5)
I float(7)

I We can also round using the round function.
I What is the difference between int(8.9) and

round(8.9)?

21 / 22



 

Fizz-buzz

I Write a program which prints out each number from 1
to 1,000.

I For all numbers divisible by 3 only print the word “fizz”,
not the number.

I For all numbers divisible by 5 only print the word
“buzz”, not the number.

I For all numbers divisible by 3 and 5 print only the word
“fizzbuzz”.

22 / 22


	Computing with Numbers

