
Computers and
Programs

Theresa Migler-VonDollen
CMPS 5P

1 / 28



 

The String Data Type

I The most common use of personal computers is word
processing.

I Text is represented in programs by the string data type.
I A string is a sequence of characters enclosed within

quotation marks or apostrophes.
I How do we get a string as input?

2 / 28



 

The String Data Type

I We can access the individual characters in a string
through indexing.

I The positions in a string are numbered from the left,
starting with 0.

I The general form is <string> [<expr>], where the
value of expr determines which character is selected
from the string.

I In a string of n characters, the last character is at
position n− 1 since we start counting with 0.

I We can index from the right side using negative
indices.

3 / 28



 

The String Data Type

I Indexing returns a string containing a single character
from a larger string.

I We can also access a contiguous sequence of
characters, called a substring, through a process
called slicing.

I Slicing: <string> [<start>:<end>]

I start and end should both be ints.
I The slice contains the substring beginning at position

start and runs up to but doesn’t include the position
end.

4 / 28



 

The String Data Type

I Can we put two strings together into a longer string?
I Concatenation “glues” two strings together +.
I Repetition builds up a string by multiple

concatenations of a string with itself ?.
I The function len returns the length of a string.

5 / 28



 

Simple String Processing

Write a Python program that asks the user for her first and
last name and then prints a username. The username
should be the first initial of the first name and the first
seven characters of the last name.

I Can we make the username lowercase?
I Can we exclude punctuation?

6 / 28



 

Other String Methods

I There are a number of other string methods:
I s.capitalize() - Copy of s with only the first character

capitalized.
I s.title() - Copy of s; first character of each word

capitalized.
I s.center(width) - Center s in a field of given width.
I s.count(sub) - Count the number of occurrences of

sub in s.
I s.find(sub) - Find the first position where sub occurs in s.
I s.join(list) - Concatenate list of strings into one large

string using s as separator.
I s.ljust(width) - Like center, but s is left- justified.

7 / 28



 

Other String Methods

I There are a number of other string methods:
I s.lower() - Copy of s in all lowercase letters
I s.lstrip() - Copy of s with leading whitespace removed
I s.replace(oldsub, newsub) - Replace occurrences of

oldsub in s with newsub
I s.rfind(sub) - Like find, but returns the right-most position
I s.rjust(width) - Like center, but s is right- justified
I s.rstrip() - Copy of s with trailing whitespace removed
I s.split() - Split s into a list of substrings
I s.upper() - Copy of s; all characters converted to

uppercase

8 / 28



 

Improved Username

Modify the username program so that the username is all
lowercase with no punctuation.

I Hint: Use the string library and string.punctuation.

9 / 28



 

Simple String Processing

Write a Python program that asks for an int between 1 and
12 and returns the three letter abbreviation for the
corresponding month.

I Hint: store all the names in one big string:
“JanFebMarAprMayJunJulAugSepOctNovDec” and
slice.

I One weakness - this method only works where the
potential outputs all have the same length.

I How could you handle spelling out the months?

10 / 28



 

Strings, Lists, and Sequences

I It turns out that strings are really a special kind of
sequence, so these operations also apply to
sequences.

I Strings are always sequences of characters, but lists
can be sequences of arbitrary values.

I Lists can have numbers, strings, or both.
I We can use the idea of a list to make our previous

month program even simpler.
I We change the lookup table for months to a list.

11 / 28



 

Strings, Lists, and Sequences

I Lists are mutable, meaning they can be changed.
I Strings can not be changed.
I Inside the computer, strings are represented as

sequences of 1’s and 0’s, just like numbers.
I A string is stored as a sequence of binary numbers,

one number per character.
I It doesn’t matter what value is assigned as long as it’s

done consistently.

12 / 28



 

Strings, Lists, and Sequences

I In the early days of computers, each manufacturer
used their own encoding of numbers for characters.

I ASCII system (American Standard Code for
Information Interchange) uses 127 bit codes.

I Python supports Unicode (100,000+ characters).
I The ord function returns the numeric (ordinal) code of

a single character.
I The chr function converts a numeric code to the

corresponding character.
I Using ord and char we can convert a string into and

out of numeric form.

13 / 28



 

Strings, Lists, and Sequences

Write a “secret code” program.
For each character in a message print the corresponding
number of the character.

I Hint: a for loop iterates over a sequence of objects,
so the for loop looks like:
for ch in <string>.

14 / 28



 

Strings, Lists, and Sequences

I Strings are objects that have useful methods
associated with them.

I One of these methods is split. This will split a string into
substrings based on spaces.

I Example:
>>> “Hello string methods!”.split()
[’Hello’, ’string’, ’methods!’]

I Split can be used on characters other than space, by
supplying the character as a parameter.

15 / 28



 

Strings, Lists, and Sequences

Now write a decoder.
I Hint: Convert a string containing digits into a number

by using eval.
I Hint: Use a string accumulator variable, initialize as the

empty string, ” ”.

16 / 28



 

From Encoding to Encryption

I The process of encoding information for the purpose
of keeping it secret or transmitting it privately is called
encryption.

I Cryptography is the study of encryption methods.
I Encryption is used when transmitting credit card and

other personal information to a web site.
I Strings are represented as a sort of encoding problem,

where each character in the string is represented as a
number that’s stored in the computer.

I The code that is the mapping between character and
number is an industry standard, so it’s not “secret”.

17 / 28



 

From Encoding to Encryption

I The encoding/decoding programs we wrote use a
substitution cipher, where each character of the
original message, known as the plaintext, is replaced
by a corresponding symbol in the cipher alphabet.

I The resulting code is known as the ciphertext.
I This type of code is relatively easy to break.
I Each letter is always encoded with the same symbol,

so using statistical analysis on the frequency of the
letters and trial and error, the original message can be
determined.

18 / 28



 

From Encoding to Encryption

I Modern encryption converts messages into numbers.
I Sophisticated mathematical formulas convert these

numbers into new numbers - usually this
transformation consists of combining the message
with another value called the “key”

I To decrypt the message, the receiving end needs an
appropriate key so the encoding can be reversed.

19 / 28



 

From Encoding to Encryption

I In a private key system the same key is used for
encrypting and decrypting messages. Everyone you
know would need a copy of this key to communicate
with you, but it needs to be kept a secret.

I In public key encryption, there are separate keys for
encrypting and decrypting the message.

I In public key systems, the encryption key is made
publicly available, while the decryption key is kept
private.

I Anyone with the public key can send a message, but
only the person who holds the private key (decryption
key) can decrypt it.

20 / 28



 

Input/Output as String Manipulation

Write a Python program that takes a date in numeric
format and prints the same date in words.
For example: we want to enter a date in the format
“05/24/2003” and print “May 24, 2003”.

21 / 28



 

Input/Output as String Manipulation

I Sometimes we want to convert a number into a string.
I We can use the str function.
I If value is a string, we can concatenate a period onto

the end of it.
I If value is an int, what happens?

22 / 28



 

Files: Multi-line Strings

I A file is a sequence of data that is stored in secondary
memory.

I Files can contain any data type, but the easiest to
work with are text.

I A file usually contains more than one line of text.
I Python uses the standard newline character (\n) to

mark line breaks.

23 / 28



 

Files: Multi-line Strings

I Hello
World

Goodbye
I Stored in a file as:

Hello\nWorld\n\nGoodbye\n

24 / 28



 

Files: Multi-line Strings

I The process of opening a file involves associating a file
on disk with an object in memory.

I We can manipulate the file by manipulating this
object.

I Read from the file
I Write to the file

I When done with the file, it needs to be closed.
Closing the file causes any outstanding operations
and other bookkeeping for the file to be completed.

I In some cases, not properly closing a file could result
in data loss.

25 / 28



 

Files Processing

I Working with text files in Python:
I Associate a disk file with a file object using the open

function <filevar>=open(<name>, <mode>)
I Name is a string with the actual file name on the disk.

The mode is either ’r’ or ’w’ depending on whether we
are reading or writing the file.

I Infile = open(“numbers.dat”, “r”)

26 / 28



 

Files Methods

I <file>.read() - returns the entire remaining contents of
the file as a single (possibly large, multi-line) string.

I <file>.readline() - returns the next line of the file. This is
all text up to and including the next newline
character.

I <file>.readlines() - returns a list of the remaining lines
in the file. Each list item is a single line including the
newline characters.

27 / 28



 

Read in a Book

I Go to http://www.gutenberg.org, download a book
as plain text, copy and paste it into a text editor, and
save it as a .txt file.

I Write a Python program that reads in the text file and
prints the word count and average word length.

28 / 28


	Sequences: Strings, Lists, and Files

