Complexity

- Theresa Migler-VonDollen

Complexity
.

Complexity
e

A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
1 There exists a “checking algorithm” C, that takes as input:

Complexity
.

A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C, that takes as input:
O The given instance of the problem, /, and

Complexity
.

A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C, that takes as input:

O The given instance of the problem, /, and
O The proposed solution, S.

Complexity
.

A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C, that takes as input:

O The given instance of the problem, /, and
O The proposed solution, S.

C outputs true if and only if S is a solution for instance /.

Complexity
.

A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C, that takes as input:

O The given instance of the problem, /, and
O The proposed solution, S.

C outputs true if and only if S is a solution for instance /.

Further, the running time of C on instance (/,S), is
polynomial in |/].

Complexity
.

A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C, that takes as input:

O The given instance of the problem, /, and
O The proposed solution, S.

C outputs true if and only if S is a solution for instance /.

Further, the running time of C on instance (/,S), is
polynomial in |/].

I think of C as a “grading algorithm”.

Complexity
.

A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C, that takes as input:

O The given instance of the problem, /, and
O The proposed solution, S.

C outputs true if and only if S is a solution for instance /.

Further, the running time of C on instance (/,S), is
polynomial in |/].

I think of C as a “grading algorithm”.

The class of all decision problems is denoted by NP.

NP

NP
- ___

The class of all decision problems is denoted by NP.

NP
- ___

The class of all decision problems is denoted by NP.

Examples:

NP
- ___

The class of all decision problems is denoted by NP.

Examples:

71 Knapsack

NP
- ___

The class of all decision problems is denoted by NP.

Examples:

71 Knapsack
O How? It's an optimization problem.

NP
- ___

The class of all decision problems is denoted by NP.

Examples:

71 Knapsack

O How? It's an optimization problem.
O Convert it to a decision problem:

NP
- ___

The class of all decision problems is denoted by NP.

Examples:

71 Knapsack

O How? It's an optimization problem.
O Convert it to a decision problem:

= Introduce a threshold and check that your solution meets that
threshold.

NP
- ___

The class of all decision problems is denoted by NP.

Examples:

71 Knapsack

O How? It's an optimization problem.
O Convert it to a decision problem:

= Introduce a threshold and check that your solution meets that
threshold.

1 Independent Set

NP
- ___

The class of all decision problems is denoted by NP.

Examples:

71 Knapsack

O How? It's an optimization problem.
O Convert it to a decision problem:

= Introduce a threshold and check that your solution meets that
threshold.

1 Independent Set

1 Traveling Salesperson Problem

NP
.

The class of all decision problems is denoted by NP.

Examples:

Knapsack

O How? It's an optimization problem.
O Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem

Minimum Spanning Tree

NP
.

The class of all decision problems is denoted by NP.

Examples:

Knapsack

O How? It's an optimization problem.
O Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set

Traveling Salesperson Problem
Minimum Spanning Tree
Matching

NP
.

The class of all decision problems is denoted by NP.

Examples:

Knapsack

O How? It's an optimization problem.
O Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set

Traveling Salesperson Problem
Minimum Spanning Tree
Matching

Many, many others.

P
- ___

P is the class of all decision problems that can be solved in
polynomial time.

| |_'

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P:

| |_'

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P:

C1 Minimum Spanning Tree

| |_'

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P:
C1 Minimum Spanning Tree

1 Longest Increasing Subsequence

| |_'

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P:
C1 Minimum Spanning Tree
1 Longest Increasing Subsequence

I Independent Set on Trees

P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P:
Minimum Spanning Tree
Longest Increasing Subsequence
Independent Set on Trees
Bipartite Matching

P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P:
Minimum Spanning Tree
Longest Increasing Subsequence
Independent Set on Trees
Bipartite Matching

Many, many others

P = NP?

P = NP?
L

By definition, P C NP.

P = NP?
L

By definition, P C NP.
But is P = NP?

P = NP?
1
By definition, P C NP.

But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

P = NP?
L

By definition, P C NP.
But is P = NP?
Are there any decision problems that can’t be solved in
polynomial time?
O If so:

P = NP?
L

By definition, P C NP.
But is P = NP?
Are there any decision problems that can’t be solved in
polynomial time?
O If so:
P # NP

P = NP?
L

By definition, P C NP.
But is P = NP?
Are there any decision problems that can’t be solved in
polynomial time?
O If so:
P # NP
O If not:

P = NP?
L

By definition, P C NP.
But is P = NP?
Are there any decision problems that can’t be solved in
polynomial time?
O If so:
P+ NP
O If not:
P=NP

P = NP?
L

By definition, P C NP.
But is P = NP?
Are there any decision problems that can’t be solved in
polynomial time?
O If so:
P+ NP
O If not:
P=NP

The answer is unknown.

P = NP?
L

By definition, P C NP.
But is P = NP?
Are there any decision problems that can’t be solved in
polynomial time?
O If so:
P+ NP
O If not:
P=NP
The answer is unknown.

Most mathematicians believe that P # NP.

P = NP?
L

By definition, P C NP.
But is P = NP?
Are there any decision problems that can’t be solved in
polynomial time?
O If so:
P # NP
O If not:
P=NP

The answer is unknown.
Most mathematicians believe that P # NP.

This is one of the most important unsolved problems in
mathematics.

NP-Complete
.

NP-Complete
-

A problem X is NP-complete if:

NP-Complete
-

A problem X is NP-complete if:
X isin NP and

NP-Complete
-

A problem X is NP-complete if:
X isin NP and
Every problem in NP is reducible to X in polynomial time.

NP-Complete
-

A problem X is NP-complete if:
X isin NP and
Every problem in NP is reducible to X in polynomial time.

Note: A problem satisfying condition 2 is NP-hard if it doesn't
satisfy condition 1.

NP-Complete
L

A problem X is NP-complete if:
X isin NP and

Every problem in NP is reducible to X in polynomial time.

Note: A problem satisfying condition 2 is NP-hard if it doesn't
satisfy condition 1.

\\ NP-Hard /" ‘ NP-Hard ‘

NP-Complete

P=NP=

NP-Complete

P # NP

Reductions
S

Reductions
.

A reduction from a decision problem A to a decision problem B
(A — B) is a polynomial time algorithm, f:

Reductions
1

A reduction from a decision problem A to a decision problem B
(A — B) is a polynomial time algorithm, f:

That transforms an instance, /, of A into an instance, f(/), of B.

Reductions
1

A reduction from a decision problem A to a decision problem B
(A — B) is a polynomial time algorithm, f:
That transforms an instance, /, of A into an instance, f(/), of B.

Together with another polynomial time algorithm, h:

Reductions
1

A reduction from a decision problem A to a decision problem B
(A — B) is a polynomial time algorithm, f:

That transforms an instance, /, of A into an instance, f(/), of B.
Together with another polynomial time algorithm, h:

That maps any solution S of f(/) back into a solution h(S) of /.

Reductions
1

A reduction from a decision problem A to a decision problem B
(A — B) is a polynomial time algorithm, f:

That transforms an instance, /, of A into an instance, f(/), of B.
Together with another polynomial time algorithm, h:

That maps any solution S of f(/) back into a solution h(S) of /.
If £(/) has no solution, then neither does /.

Reductions
1

A reduction from a decision problem A to a decision problem B
(A — B) is a polynomial time algorithm, f:

That transforms an instance, /, of A into an instance, f(/), of B.
Together with another polynomial time algorithm, h:

That maps any solution S of f(/) back into a solution h(S) of /.
If £(/) has no solution, then neither does /.

Algorithm for A

Solution

Solution S of f(I)
Initari Instance f(I) | Algorithm 4'4 h(S) of I
for B

No solution to f(I)

No solution to I

Reductions
1

A reduction from a decision problem A to a decision problem B
(A — B) is a polynomial time algorithm, f:

That transforms an instance, /, of A into an instance, f(/), of B.
Together with another polynomial time algorithm, h:

That maps any solution S of f(/) back into a solution h(S) of /.
If £(/) has no solution, then neither does /.

Algorithm for A

Solution

Solution S of f(I)
Initari Instance f(I) | Algorithm 4'4 h(S) of I
for B

No solution to f(I)

No solution to I

If such a reduction exists, it implies that B is at least as hard as A.

SAT

SAT

Definition

A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted V)
of several literals.

SAT
.

A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted V)
of several literals.

A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x).

SAT

A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted V)
of several literals.

A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x).

Example:
(xVyVzZ)A(xVI)A(yVZI)AN(zVX)AN(XVYV2Z)

SAT

Definition

A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted V)
of several literals.

A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (k).

Example:
(xVyV2)AKXVYIN(YyVZIIAN(zVX)AN(XVYV2Z)

SAT

SAT

Definition

A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted V)
of several literals.

A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (k).

Example:
(xVyV2)AKXVYIN(YyVZIIAN(zVX)AN(XVYV2Z)

SAT

Input: A Boolean formula.

SAT
.

A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted V)
of several literals.

A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x).

Example:
(xVyVzZ)A(xVI)A(yVZI)AN(zVX)AN(XVYV2Z)

Input: A Boolean formula.

Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT

SAT
- ___
SAT

Input: A Boolean formula.

Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT
.

Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such

assignment exists.

(xVyVZ)AxVI)A(yVZIIAN(zVX)AN(XVYVZ)

SAT
.

Input: A Boolean formula.

Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(xVyVZ)AxVI)A(yVZIIAN(zVX)AN(XVYVZ)
Is there an assignment for x, y, and z that makes the following
statement TRUE?

SAT
.

Input: A Boolean formula.

Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(xVyVZ)AxVI)A(yVZIIAN(zVX)AN(XVYVZ)
Is there an assignment for x, y, and z that makes the following
statement TRUE?

3-SAT is a special case of k-SAT, when each clause contains exactly
k = 3 literals. It was one of Karp's 21 NP-complete problems.

SAT
.

Input: A Boolean formula.

Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(xVyVZ)AxVI)A(yVZIIAN(zVX)AN(XVYVZ)
Is there an assignment for x, y, and z that makes the following
statement TRUE?

3-SAT is a special case of k-SAT, when each clause contains exactly
k = 3 literals. It was one of Karp's 21 NP-complete problems.

We will use 3-SAT to show that Independent Set is NP-complete.

Independent Set
.

Independent Set
-

A subset S C V of vertices forms an independent set of a graph
G = (V, E) if there are no edges between them.

Independent Set

.
A subset S C V of vertices forms an independent set of a graph
G = (V, E) if there are no edges between them.

Independent Set

Independent Set

.
A subset S C V of vertices forms an independent set of a graph
G = (V, E) if there are no edges between them.

Independent Set

Input: A graph G = (V,E).

Independent Set

.
A subset S C V of vertices forms an independent set of a graph
G = (V, E) if there are no edges between them.

Independent Set

Input: A graph G = (V,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Independent Set

.
A subset S C V of vertices forms an independent set of a graph
G = (V, E) if there are no edges between them.

Independent Set

Input: A graph G = (V,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Definition
A subset S C V of vertices forms an independent set of a graph
G = (V, E) if there are no edges between them.

Independent Set

Input: A graph G = (V,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Independent Set

Definition
A subset S C V of vertices forms an independent set of a graph
G = (V, E) if there are no edges between them.

Independent Set

Input: A graph G = (V,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V, E) and a value g.

Independent Set

Definition
A subset S C V of vertices forms an independent set of a graph
G = (V, E) if there are no edges between them.

Independent Set

Input: A graph G = (V,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V, E) and a value g.
Goal: Find an independent set with g vertices.

3SAT — Independent Set
.

3SAT — Independent Set
L

Algorithm for A

I . Solution S of f(I) n Solution
n?tarﬁ Instance f(I) | Algorithm 4’ | h(s)of 1
for B No solution to f(I)

No solution to I

3SAT — Independent Set
L

Algorithm for A

I . Solution S of f(I) n Solution
n?tarﬁ Instance f(I) | Algorithm 4’ | h(s)of 1
for B No solution to f(I)

No solution to I

We wish to show that Independent Set is at least as hard as 3SAT.

3SAT — Independent Set
L

Algorithm for A

I . Solution S of f(I) n Solution
n?tarﬁ Instance f(I) | Algorithm 4’ | h(s)of 1
for B No solution to f(I)

No solution to I

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

3SAT — Independent Set
L

Algorithm for A

I . Solution S of f(I) n Solution
n?tarﬁ Instance f(I) | Algorithm 4’ | h(s)of 1
for B No solution to f(I)

No solution to I

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.

3SAT — Independent Set
L

Algorithm for A

I . Solution S of f(I) n Solution
n?tarﬁ Instance f(I) | Algorithm 4’ | h(s)of 1
for B No solution to f(I)

No solution to I

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.

The other deals with graphs.

3SAT — Independent Set
L

Algorithm for A

I . Solution S of f(I) n Solution
n?tarﬁ Instance f(I) | Algorithm 4’ | h(s)of 1
for B No solution to f(I)

No solution to I

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.
The other deals with graphs.

We need to relate Boolean logic with graphs.

3SAT — Independent Set
.

3SAT — Independent Set
L

Begin by relating each clause to a graph

3SAT — Independent Set
L

Begin by relating each clause to a graph - a triangle.

3SAT — Independent Set
L

Begin by relating each clause to a graph - a triangle.
O Why?

3SAT — Independent Set
L

Begin by relating each clause to a graph - a triangle.
O Why?
Label the vertices with the variables.

3SAT — Independent Set

Begin by relating each clause to a graph - a triangle.
O Why?
Label the vertices with the variables.

Example:

3SAT — Independent Set
.

3SAT — Independent Set

Example:

xvyvz — ‘
O—0

3SAT — Independent Set

Example:

A triangle has all three vertices maximally connected.

3SAT — Independent Set

Example:

A triangle has all three vertices maximally connected.

O This requires that only one vertex is selected for the
independent set.

3SAT — Independent Set

Example:

A triangle has all three vertices maximally connected.

O This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.

3SAT — Independent Set

Example:

A triangle has all three vertices maximally connected.

O This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.

O The independent set for this graph has to pick at most one
literal from each clause.

3SAT — Independent Set

Example:

A triangle has all three vertices maximally connected.

O This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.

O The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

3SAT — Independent Set

Example:

A triangle has all three vertices maximally connected.
O This requires that only one vertex is selected for the
independent set.
Repeat this construction for all clauses.
O The independent set for this graph has to pick at most one
literal from each clause.
To force exactly one choice from each clause, take g to be the
number of clauses.
O How can we make sure not to include both x and x?

3SAT — Independent Set

Example:

A triangle has all three vertices maximally connected.
O This requires that only one vertex is selected for the
independent set.
Repeat this construction for all clauses.
O The independent set for this graph has to pick at most one
literal from each clause.
To force exactly one choice from each clause, take g to be the
number of clauses.
O How can we make sure not to include both x and x?
Add an edge between every variable and its negation.

3SAT — Independent Set
.

3SAT — Independent Set

XvyvzAWwWvXxvy) — ‘
O— mo

3SAT — Independent Set

Xvyvzawvxvy —
ﬂe mﬂ

f is the function that takes an input, /, to 3SAT (a boolean
formula) and converts it to an input, f(/), for Independent Set (a
graph and a value, g).

3SAT — Independent Set

Xvyvzawvxvy —
ﬂe mﬂ

f is the function that takes an input, /, to 3SAT (a boolean
formula) and converts it to an input, f(/), for Independent Set (a
graph and a value, g).

For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.

3SAT — Independent Set

Xvyvzawvxvy —
ﬂe @0

f is the function that takes an input, /, to 3SAT (a boolean
formula) and converts it to an input, f(/), for Independent Set (a
graph and a value, g).

For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.

f also adds an edge between vertices representing variable x,
and all vertices representing the negation of x, X.

3SAT — Independent Set

Xvyvzawvxvy —
ﬂe m»

f is the function that takes an input, /, to 3SAT (a boolean
formula) and converts it to an input, f(/), for Independent Set (a
graph and a value, g).
For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.
f also adds an edge between vertices representing variable x,
and all vertices representing the negation of x, X.
If there are n clauses in I, (/) is the graph described above
with value g = n.

3SAT — Independent Set
.

3SAT — Independent Set

XvyvAaWvXxvy) — ‘
(v) (2) m@

3SAT — Independent Set

h is the function that takes a solution, S, for input f(/), for
Independent Set and converts it to a solution, h(S), for input / for
3SAT.

3SAT — Independent Set

h is the function that takes a solution, S, for input f(/), for
Independent Set and converts it to a solution, h(S), for input / for
3SAT.

A solution for Independent Set is a set of vertices (if this set
has size g).

3SAT — Independent Set

h is the function that takes a solution, S, for input f(/), for
Independent Set and converts it to a solution, h(S), for input / for
3SAT.

A solution for Independent Set is a set of vertices (if this set
has size g).

h simply takes the labels of all of the vertices in the
independent set and sets their value to true.

3SAT — Independent Set
.

3SAT — Independent Set

Algorithm for A

Instance
I —

Instance f(I)

Algorithm
for B

Solution S of f(I) _>

No solution to f(I)

Solution
h(S) of I

No solution to I

3SAT — Independent Set
L

Algorithm for A

Inst . Solution S of f(I) h Solution
nstance| Instance f(1) | Algorithm [~ 7| [hs)of 1
for B No solution to f(I)

No solution to I

f is the construction that takes a Boolean formula to a graph
and threshold value.

3SAT — Independent Set
L

Algorithm for A

Inst . Solution S of f(I) h Solution
nstance| Instance f(1) | Algorithm [~ 7| [hs)of 1
for B No solution to f(I)

No solution to I

f is the construction that takes a Boolean formula to a graph
and threshold value.

O This is a polynomial time construction.

3SAT — Independent Set
L

Algorithm for A

Inst . Solution S of f(I) h Solution
nstance Instance f(I) | Algorithm 4’ [h(S)of I

I —
for B No solution to f(I) .
No solution to I

f is the construction that takes a Boolean formula to a graph
and threshold value.

O This is a polynomial time construction.
Suppose that there was a polynomial time algorithm for
Independent Set.

3SAT — Independent Set

Algorithm for A

Instance
I —

Instance f(I)

Algorithm
for B

Solution S of f(I) _>

No solution to f(I)

Solution
h(S) of I

No solution to I

f is the construction that takes a Boolean formula to a graph
and threshold value.
O This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

3SAT — Independent Set
L

Algorithm for A

Inst . Solution S of f(I) h Solution
nstance Instance f(I) | Algorithm 4’ [h(S)of I

I —_
for B No solution to f(I)

No solution to I

f is the construction that takes a Boolean formula to a graph
and threshold value.
O This is a polynomial time construction.
Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.
O This is a polynomial time conversion.

3SAT — Independent Set

Algorithm for A

Instance
7 —] . Instance f(I)

Algorithm
for B

Solution S of f(I) _>

No solution to f(I)

Solution
h(S) of I

No solution to I

f is the construction that takes a Boolean formula to a graph
and threshold value.
O This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for

Independent Set.

h takes a solution for Independent Set to a solution for 3SAT.
O This is a polynomial time conversion.
If G has no independent set of size g, what does that mean?

3SAT — Independent Set

Algorithm for A

Instance
7 —] . Instance f(I)

Algorithm
for B

Solution S of f(I) _>

No solution to f(I)

Solution
h(S) of I

No solution to I

f is the construction that takes a Boolean formula to a graph
and threshold value.
O This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for

Independent Set.

h takes a solution for Independent Set to a solution for 3SAT.
O This is a polynomial time conversion.
If G has no independent set of size g, what does that mean?
O The Boolean formula is not satisfiable.

3SAT — Independent Set - Example
.

3SAT — Independent Set - Example
L

Suppose that the input to 3SAT is the following Boolean formula:

3SAT — Independent Set - Example
L

Suppose that the input to 3SAT is the following Boolean formula:
(xVyVw)A(XVzVW)A(yVvVZ)A(XVVVZ)

3SAT — Independent Set - Example
L

Suppose that the input to 3SAT is the following Boolean formula:
(xVyVw)A(XVzVW)A(yVvVZ)A(XVVVZ)

What is the corresponding graph and threshold for the independent
set problem?

Vertex Cover
S

Vertex Cover
.

A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
|

.
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
|

.
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Input: A graph G = (V,E).

Vertex Cover
-
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover

Input: A graph G = (V,E).
Goal: Find a vertex cover of minimum size.

Vertex Cover
-
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover

Input: A graph G = (V,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover

Definition

A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover

Input: A graph G = (V,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover

Input: A graph G = (V, E), and a value x.

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover

Input: A graph G = (V,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover

Input: A graph G = (V, E), and a value x.
Goal: Find a vertex cover with size x.

Independent Set — Vertex Cover
.

Independent Set — Vertex Cover
L

Algorithm for A

Instance
7 —

Instance f(I)

Algorithm
for B

Solution S of f(I) _>

No solution to f(I)

Solution
h(S) of I

No solution to I

Independent Set — Vertex Cover
-

Algorithm for A

Instance :
1 . Instance f(I) | Algorithm
! for B

Solution S of f(I) _>

No solution to f(1)

Solution
h(S) of I

No solution to I

A set of vertices S is a vertex cover of a graph G if and only if the
vertices V' \ S are an independent set of G.

Independent Set — Vertex Cover
L

Algorithm for A

Solution S of f(I) Solution
Instance | . Instance f(I) | Algorithm 4’_> h(S) of I
for B

No solution to f(I)

No solution to I

A set of vertices S is a vertex cover of a graph G if and only if the
vertices V' '\ S are an independent set of G.

Let | = (G,g), then f((G,g)) = (G,|V| - g).

Independent Set — Vertex Cover
L

Algorithm for A

Solution S of f(I) Solution
Initalﬁ . Instance f(I) | Algorithm 4>4’ h(S) of I
for B

No solution to f(I)

No solution to I

A set of vertices S is a vertex cover of a graph G if and only if the
vertices V' '\ S are an independent set of G.

Let | = (G,g). then £((G.g)) = (G, V| -).
Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W C V (if one exists).

Independent Set — Vertex Cover
L

Algorithm for A

Instance
7 —]

. Instance f(I)

Algorithm
for B

Solution S of f(I) 4»

No solution to f(I)

Solution
h(S) of I

No solution to I

A set of vertices S is a vertex cover of a graph G if and only if the
vertices V' '\ S are an independent set of G.

Let | = (G,g), then f((G,g)) = (G,|V| - g).

Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W C V (if one exists).

A

W)= V\W.

Independent Set — Vertex Cover
L

Algorithm for A

Instance
7 —]

. Instance f(I)

Algorithm
for B

Solution S of f(I) 4»

No solution to f(I)

Solution
h(S) of I

No solution to I

A set of vertices S is a vertex cover of a graph G if and only if the
vertices V' '\ S are an independent set of G.

Let | = (G,g), then f((G,g)) = (G,|V| - g).

Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W C V (if one exists).

A

W)= V\W.

No solution for f(/) implies no solution to /.

Clique

Clique
-

A clique is a graph in which there is an edge between every two
vertices.

Clique

Definition
A clique is a graph in which there is an edge between every two

vertices.
Example (K7):
® o
L

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):
® o
®
® ®
® o
Clique
Input: A graph G = (V, E) and a value k.

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):
® o
®
® ®
® o

Clique

Input: A graph G = (V, E) and a value k.
Goal: Find a clique of size k in G.

Independent Set — Clique
.

Independent Set — Clique
-

The complement of a graph G = (V/, E) is the graph G=(V,E)
where E contains the possible edges of G that are not in E.

Independent Set — Clique

Definition
The complement of a graph G = (V/, E) is the graph G=(V,E)
where E contains the possible edges of G that are not in E.

Example:

Sy Sr

Independent Set — Clique
.

Independent Set — Clique
L

Algorithm for A
Solution S of f(I)
Iﬂ?tani Instance f(1) _| Algorithm 4>

for B

No solution to f(I)

Solution
h(S) of I

No solution to I

Independent Set — Clique

Algorithm for A

Instance :
mad . Instance f(7) | Algorithm
! for B

Solution S of f(I) .

No solution to f(I)

Solution
h(S) of I

No solution to I

A set of vertices S is an independent set of a graph G if and only if

the S is a clique of G.

Independent Set — Clique

Algorithm for A

Instance :
mad . Instance f(7) | Algorithm
! for B

Solution S of f(I) .

No solution to f(I)

Solution
h(S) of I

No solution to I

A set of vertices S is an independent set of a graph G if and only if

the S is a clique of G.

O Let I = (G, g), then f((G,

g)) =(G.g).

Independent Set — Clique
L

Algorithm for A

Solution

Solution S of f(I)
In;tani Instance f(1) | Algorithm 4’4 h(S) of I
for B

No solution to f(I)

No solution to I

A set of vertices S is an independent set of a graph G if and only if
the S is a clique of G.

Let | = (G, g), then ((G,g)) = (G, g).

Suppose that there is a polynomial time algorithm for Clique
that returns solution W C V (if one exists).

Independent Set — Clique

Algorithm for A

I Solution S of f(I) Solution
n;tani . Instance f(/) | Algorithm 4’4 h(S) of I
for B No solution to f(I)

No solution to I

A set of vertices S is an independent set of a graph G if and only if
the S is a clique of G.

Let | = (G, g), then f((G,g)) = (G, 8).
Suppose that there is a polynomial time algorithm for Clique
that returns solution W C V (if one exists).

h(W) = W.

Independent Set — Clique
L

Algorithm for A

Instance
7 —

. Instance f(I)

Algorithm
for B

Solution S of f(I)

No solution to f(I)

Solution
h(S) of I

No solution to I

A set of vertices S is an independent set of a graph G if and only if

the S i

s a clique of G.

Let | = (G, g), then f((G,g)) = (G, g).

Suppose that there is a polynomial time algorithm for Clique
that returns solution W C V (if one exists).

h(

W) = W.

No solution for f(/) implies no solution to /.

What have we shown?
S

What have we shown?
S

We have shown:

What have we shown?
1

We have shown:
Independent Set is at least as hard as 3SAT.

What have we shown?
1
We have shown:

Independent Set is at least as hard as 3SAT.

Vertex Cover is at least as hard as Independent Set.

What have we shown?
1

We have shown:
Independent Set is at least as hard as 3SAT.
Vertex Cover is at least as hard as Independent Set.

Clique is at least as hard as Independent Set.

What have we shown?

We have shown:
Independent Set is at least as hard as 3SAT.
Vertex Cover is at least as hard as Independent Set.

Clique is at least as hard as Independent Set.

Independent
Set

