
Complexity

CPE 349 Theresa Migler-VonDollen

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I ,S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I ,S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:

There exists a “checking algorithm” C , that takes as input:
The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I ,S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I ,S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and

The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I ,S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I ,S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .

Further, the running time of C on instance (I ,S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I , S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I , S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

Complexity

Definition
A decision problem is a problem for which any proposed solution
can be quickly checked for correctness.

For a decision problem:
There exists a “checking algorithm” C , that takes as input:

The given instance of the problem, I , and
The proposed solution, S .

C outputs true if and only if S is a solution for instance I .
Further, the running time of C on instance (I , S), is
polynomial in |I |.

I think of C as a “grading algorithm”.

Definition
The class of all decision problems is denoted by NP .

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack

How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.

Convert it to a decision problem:
Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set

Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem

Minimum Spanning Tree
Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree

Matching
Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching

Many, many others.

NP

Definition
The class of all decision problems is denoted by NP.

Examples:

Knapsack
How? It’s an optimization problem.
Convert it to a decision problem:

Introduce a threshold and check that your solution meets that
threshold.

Independent Set
Traveling Salesperson Problem
Minimum Spanning Tree
Matching
Many, many others.

P

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P :
Minimum Spanning Tree
Longest Increasing Subsequence
Independent Set on Trees
Bipartite Matching
Many, many others

P

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P :
Minimum Spanning Tree
Longest Increasing Subsequence
Independent Set on Trees
Bipartite Matching
Many, many others

P

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P :

Minimum Spanning Tree
Longest Increasing Subsequence
Independent Set on Trees
Bipartite Matching
Many, many others

P

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P :
Minimum Spanning Tree

Longest Increasing Subsequence
Independent Set on Trees
Bipartite Matching
Many, many others

P

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P :
Minimum Spanning Tree
Longest Increasing Subsequence

Independent Set on Trees
Bipartite Matching
Many, many others

P

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P :
Minimum Spanning Tree
Longest Increasing Subsequence
Independent Set on Trees

Bipartite Matching
Many, many others

P

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P :
Minimum Spanning Tree
Longest Increasing Subsequence
Independent Set on Trees
Bipartite Matching

Many, many others

P

Definition
P is the class of all decision problems that can be solved in
polynomial time.

Examples of decision problems in P :
Minimum Spanning Tree
Longest Increasing Subsequence
Independent Set on Trees
Bipartite Matching
Many, many others

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .

But is P = NP?
Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:

P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:

P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.

Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .

This is one of the most important unsolved problems in
mathematics.

P = NP?

By definition, P ⊆ NP .
But is P = NP?

Are there any decision problems that can’t be solved in
polynomial time?

If so:
P 6= NP

If not:
P = NP

The answer is unknown.
Most mathematicians believe that P 6= NP .
This is one of the most important unsolved problems in
mathematics.

NP-Complete

Definition
A problem X is NP-complete if:

1 X is in NP and
2 Every problem in NP is reducible to X in polynomial time.

Note: A problem satisfying condition 2 is NP-hard if it doesn’t
satisfy condition 1.

NP-Complete

Definition
A problem X is NP-complete if:

1 X is in NP and
2 Every problem in NP is reducible to X in polynomial time.

Note: A problem satisfying condition 2 is NP-hard if it doesn’t
satisfy condition 1.

NP-Complete

Definition
A problem X is NP-complete if:

1 X is in NP and

2 Every problem in NP is reducible to X in polynomial time.

Note: A problem satisfying condition 2 is NP-hard if it doesn’t
satisfy condition 1.

NP-Complete

Definition
A problem X is NP-complete if:

1 X is in NP and
2 Every problem in NP is reducible to X in polynomial time.

Note: A problem satisfying condition 2 is NP-hard if it doesn’t
satisfy condition 1.

NP-Complete

Definition
A problem X is NP-complete if:

1 X is in NP and
2 Every problem in NP is reducible to X in polynomial time.

Note: A problem satisfying condition 2 is NP-hard if it doesn’t
satisfy condition 1.

NP-Complete

Definition
A problem X is NP-complete if:

1 X is in NP and
2 Every problem in NP is reducible to X in polynomial time.

Note: A problem satisfying condition 2 is NP-hard if it doesn’t
satisfy condition 1.

Reductions

Definition
A reduction from a decision problem A to a decision problem B
(A→ B) is a polynomial time algorithm, f :

That transforms an instance, I , of A into an instance, f (I), of B.

Together with another polynomial time algorithm, h:
That maps any solution S of f (I) back into a solution h(S) of I .

If f (I) has no solution, then neither does I .I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

If such a reduction exists, it implies that B is at least as hard as A.

Reductions

Definition
A reduction from a decision problem A to a decision problem B
(A→ B) is a polynomial time algorithm, f :

That transforms an instance, I , of A into an instance, f (I), of B.

Together with another polynomial time algorithm, h:
That maps any solution S of f (I) back into a solution h(S) of I .

If f (I) has no solution, then neither does I .I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

If such a reduction exists, it implies that B is at least as hard as A.

Reductions

Definition
A reduction from a decision problem A to a decision problem B
(A→ B) is a polynomial time algorithm, f :

That transforms an instance, I , of A into an instance, f (I), of B.

Together with another polynomial time algorithm, h:
That maps any solution S of f (I) back into a solution h(S) of I .

If f (I) has no solution, then neither does I .I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

If such a reduction exists, it implies that B is at least as hard as A.

Reductions

Definition
A reduction from a decision problem A to a decision problem B
(A→ B) is a polynomial time algorithm, f :

That transforms an instance, I , of A into an instance, f (I), of B.

Together with another polynomial time algorithm, h:

That maps any solution S of f (I) back into a solution h(S) of I .

If f (I) has no solution, then neither does I .I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

If such a reduction exists, it implies that B is at least as hard as A.

Reductions

Definition
A reduction from a decision problem A to a decision problem B
(A→ B) is a polynomial time algorithm, f :

That transforms an instance, I , of A into an instance, f (I), of B.

Together with another polynomial time algorithm, h:
That maps any solution S of f (I) back into a solution h(S) of I .

If f (I) has no solution, then neither does I .I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

If such a reduction exists, it implies that B is at least as hard as A.

Reductions

Definition
A reduction from a decision problem A to a decision problem B
(A→ B) is a polynomial time algorithm, f :

That transforms an instance, I , of A into an instance, f (I), of B.

Together with another polynomial time algorithm, h:
That maps any solution S of f (I) back into a solution h(S) of I .

If f (I) has no solution, then neither does I .

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

If such a reduction exists, it implies that B is at least as hard as A.

Reductions

Definition
A reduction from a decision problem A to a decision problem B
(A→ B) is a polynomial time algorithm, f :

That transforms an instance, I , of A into an instance, f (I), of B.

Together with another polynomial time algorithm, h:
That maps any solution S of f (I) back into a solution h(S) of I .

If f (I) has no solution, then neither does I .I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

If such a reduction exists, it implies that B is at least as hard as A.

Reductions

Definition
A reduction from a decision problem A to a decision problem B
(A→ B) is a polynomial time algorithm, f :

That transforms an instance, I , of A into an instance, f (I), of B.

Together with another polynomial time algorithm, h:
That maps any solution S of f (I) back into a solution h(S) of I .

If f (I) has no solution, then neither does I .I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

If such a reduction exists, it implies that B is at least as hard as A.

SAT

Definition
A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted ∨)
of several literals.
A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x̄).

Example:
(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT

Definition
A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted ∨)
of several literals.

A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x̄).

Example:
(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT

Definition
A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted ∨)
of several literals.
A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x̄).

Example:
(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT

Definition
A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted ∨)
of several literals.
A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x̄).

Example:
(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT

Definition
A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted ∨)
of several literals.
A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x̄).

Example:
(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)

SAT

Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT

Definition
A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted ∨)
of several literals.
A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x̄).

Example:
(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)

SAT
Input: A Boolean formula.

Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT

Definition
A Boolean formula in conjunctive normal form (CNF) is a collection
of clauses, each consisting of the disjunction (logical or denoted ∨)
of several literals.
A literal is either a Boolean variable (such as x) or the negation of
a Boolean variable (x̄).

Example:
(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

SAT

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)
Is there an assignment for x , y , and z that makes the following
statement TRUE?

Definition
3-SAT is a special case of k-SAT, when each clause contains exactly
k = 3 literals. It was one of Karp’s 21 NP-complete problems.

We will use 3-SAT to show that Independent Set is NP-complete.

SAT

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)
Is there an assignment for x , y , and z that makes the following
statement TRUE?

Definition
3-SAT is a special case of k-SAT, when each clause contains exactly
k = 3 literals. It was one of Karp’s 21 NP-complete problems.

We will use 3-SAT to show that Independent Set is NP-complete.

SAT

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)

Is there an assignment for x , y , and z that makes the following
statement TRUE?

Definition
3-SAT is a special case of k-SAT, when each clause contains exactly
k = 3 literals. It was one of Karp’s 21 NP-complete problems.

We will use 3-SAT to show that Independent Set is NP-complete.

SAT

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)
Is there an assignment for x , y , and z that makes the following
statement TRUE?

Definition
3-SAT is a special case of k-SAT, when each clause contains exactly
k = 3 literals. It was one of Karp’s 21 NP-complete problems.

We will use 3-SAT to show that Independent Set is NP-complete.

SAT

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)
Is there an assignment for x , y , and z that makes the following
statement TRUE?

Definition
3-SAT is a special case of k-SAT, when each clause contains exactly
k = 3 literals. It was one of Karp’s 21 NP-complete problems.

We will use 3-SAT to show that Independent Set is NP-complete.

SAT

SAT
Input: A Boolean formula.
Goal: Determine if the variables can be assigned in such a way as
to make the formula evaluate to TRUE, or determine that no such
assignment exists.

(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄)
Is there an assignment for x , y , and z that makes the following
statement TRUE?

Definition
3-SAT is a special case of k-SAT, when each clause contains exactly
k = 3 literals. It was one of Karp’s 21 NP-complete problems.

We will use 3-SAT to show that Independent Set is NP-complete.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .
Goal: Find an independent set with g vertices.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .
Goal: Find an independent set with g vertices.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .
Goal: Find an independent set with g vertices.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).

Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .
Goal: Find an independent set with g vertices.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .
Goal: Find an independent set with g vertices.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .
Goal: Find an independent set with g vertices.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .
Goal: Find an independent set with g vertices.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .

Goal: Find an independent set with g vertices.

Independent Set

Definition
A subset S ⊂ V of vertices forms an independent set of a graph
G = (V ,E) if there are no edges between them.

Independent Set

Input: A graph G = (V ,E).
Goal: Find a largest independent set (an independent set with the
most vertices).

Now state as a decision problem:

Independent Set

Input: A graph G = (V ,E) and a value g .
Goal: Find an independent set with g vertices.

3SAT → Independent Set

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.
The other deals with graphs.

We need to relate Boolean logic with graphs.

3SAT → Independent Set

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.
The other deals with graphs.

We need to relate Boolean logic with graphs.

3SAT → Independent Set

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

We wish to show that Independent Set is at least as hard as 3SAT.

These are two seemingly unrelated problems.
One deals with Boolean variables.
The other deals with graphs.

We need to relate Boolean logic with graphs.

3SAT → Independent Set

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.
The other deals with graphs.

We need to relate Boolean logic with graphs.

3SAT → Independent Set

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.

The other deals with graphs.
We need to relate Boolean logic with graphs.

3SAT → Independent Set

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.
The other deals with graphs.

We need to relate Boolean logic with graphs.

3SAT → Independent Set

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

We wish to show that Independent Set is at least as hard as 3SAT.
These are two seemingly unrelated problems.

One deals with Boolean variables.
The other deals with graphs.

We need to relate Boolean logic with graphs.

3SAT → Independent Set

Begin by relating each clause to a graph - a triangle.
Why?

Label the vertices with the variables.

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

3SAT → Independent Set

Begin by relating each clause to a graph

- a triangle.
Why?

Label the vertices with the variables.

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

3SAT → Independent Set

Begin by relating each clause to a graph - a triangle.

Why?

Label the vertices with the variables.

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

3SAT → Independent Set

Begin by relating each clause to a graph - a triangle.
Why?

Label the vertices with the variables.

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

3SAT → Independent Set

Begin by relating each clause to a graph - a triangle.
Why?

Label the vertices with the variables.

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

3SAT → Independent Set

Begin by relating each clause to a graph - a triangle.
Why?

Label the vertices with the variables.

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.
This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.
The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?
Add an edge between every variable and its negation.

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.
This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.
The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?
Add an edge between every variable and its negation.

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.

This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.
The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?
Add an edge between every variable and its negation.

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.
This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.
The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?
Add an edge between every variable and its negation.

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.
This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.

The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?
Add an edge between every variable and its negation.

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.
This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.
The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?
Add an edge between every variable and its negation.

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.
This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.
The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?
Add an edge between every variable and its negation.

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.
This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.
The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?

Add an edge between every variable and its negation.

3SAT → Independent Set

Example:

(x ∨ ȳ ∨ z) →
x

ȳ z

A triangle has all three vertices maximally connected.
This requires that only one vertex is selected for the
independent set.

Repeat this construction for all clauses.
The independent set for this graph has to pick at most one
literal from each clause.

To force exactly one choice from each clause, take g to be the
number of clauses.

How can we make sure not to include both x and x̄?
Add an edge between every variable and its negation.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

f is the function that takes an input, I , to 3SAT (a boolean
formula) and converts it to an input, f (I), for Independent Set (a
graph and a value, g).

For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.
f also adds an edge between vertices representing variable x ,
and all vertices representing the negation of x , x̄ .
If there are n clauses in I , f (I) is the graph described above
with value g = n.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

f is the function that takes an input, I , to 3SAT (a boolean
formula) and converts it to an input, f (I), for Independent Set (a
graph and a value, g).

For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.
f also adds an edge between vertices representing variable x ,
and all vertices representing the negation of x , x̄ .
If there are n clauses in I , f (I) is the graph described above
with value g = n.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

f is the function that takes an input, I , to 3SAT (a boolean
formula) and converts it to an input, f (I), for Independent Set (a
graph and a value, g).

For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.
f also adds an edge between vertices representing variable x ,
and all vertices representing the negation of x , x̄ .
If there are n clauses in I , f (I) is the graph described above
with value g = n.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

f is the function that takes an input, I , to 3SAT (a boolean
formula) and converts it to an input, f (I), for Independent Set (a
graph and a value, g).

For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.

f also adds an edge between vertices representing variable x ,
and all vertices representing the negation of x , x̄ .
If there are n clauses in I , f (I) is the graph described above
with value g = n.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

f is the function that takes an input, I , to 3SAT (a boolean
formula) and converts it to an input, f (I), for Independent Set (a
graph and a value, g).

For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.
f also adds an edge between vertices representing variable x ,
and all vertices representing the negation of x , x̄ .

If there are n clauses in I , f (I) is the graph described above
with value g = n.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

f is the function that takes an input, I , to 3SAT (a boolean
formula) and converts it to an input, f (I), for Independent Set (a
graph and a value, g).

For each clause, f creates a triangle where each vertex has
label corresponding to each variable in the clause.
f also adds an edge between vertices representing variable x ,
and all vertices representing the negation of x , x̄ .
If there are n clauses in I , f (I) is the graph described above
with value g = n.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

h is the function that takes a solution, S , for input f (I), for
Independent Set and converts it to a solution, h(S), for input I for
3SAT.

A solution for Independent Set is a set of vertices (if this set
has size g).
h simply takes the labels of all of the vertices in the
independent set and sets their value to true.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

h is the function that takes a solution, S , for input f (I), for
Independent Set and converts it to a solution, h(S), for input I for
3SAT.

A solution for Independent Set is a set of vertices (if this set
has size g).
h simply takes the labels of all of the vertices in the
independent set and sets their value to true.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

h is the function that takes a solution, S , for input f (I), for
Independent Set and converts it to a solution, h(S), for input I for
3SAT.

A solution for Independent Set is a set of vertices (if this set
has size g).
h simply takes the labels of all of the vertices in the
independent set and sets their value to true.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

h is the function that takes a solution, S , for input f (I), for
Independent Set and converts it to a solution, h(S), for input I for
3SAT.

A solution for Independent Set is a set of vertices (if this set
has size g).

h simply takes the labels of all of the vertices in the
independent set and sets their value to true.

3SAT → Independent Set

(x ∨ ȳ ∨ z) ∧ (w ∨ x ∨ y) →
x

ȳ z

x

w y

h is the function that takes a solution, S , for input f (I), for
Independent Set and converts it to a solution, h(S), for input I for
3SAT.

A solution for Independent Set is a set of vertices (if this set
has size g).
h simply takes the labels of all of the vertices in the
independent set and sets their value to true.

3SAT → Independent Set

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

This is a polynomial time conversion.
If G has no independent set of size g , what does that mean?

The Boolean formula is not satisfiable.

3SAT → Independent Set
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

This is a polynomial time conversion.
If G has no independent set of size g , what does that mean?

The Boolean formula is not satisfiable.

3SAT → Independent Set
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

This is a polynomial time conversion.
If G has no independent set of size g , what does that mean?

The Boolean formula is not satisfiable.

3SAT → Independent Set
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

This is a polynomial time conversion.
If G has no independent set of size g , what does that mean?

The Boolean formula is not satisfiable.

3SAT → Independent Set
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.

h takes a solution for Independent Set to a solution for 3SAT.
This is a polynomial time conversion.

If G has no independent set of size g , what does that mean?
The Boolean formula is not satisfiable.

3SAT → Independent Set
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

This is a polynomial time conversion.
If G has no independent set of size g , what does that mean?

The Boolean formula is not satisfiable.

3SAT → Independent Set
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

This is a polynomial time conversion.

If G has no independent set of size g , what does that mean?
The Boolean formula is not satisfiable.

3SAT → Independent Set
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

This is a polynomial time conversion.
If G has no independent set of size g , what does that mean?

The Boolean formula is not satisfiable.

3SAT → Independent Set
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

f is the construction that takes a Boolean formula to a graph
and threshold value.

This is a polynomial time construction.

Suppose that there was a polynomial time algorithm for
Independent Set.
h takes a solution for Independent Set to a solution for 3SAT.

This is a polynomial time conversion.
If G has no independent set of size g , what does that mean?

The Boolean formula is not satisfiable.

3SAT → Independent Set - Example

Suppose that the input to 3SAT is the following Boolean formula:
(x ∨ y ∨ w) ∧ (x̄ ∨ z ∨ w̄) ∧ (ȳ ∨ v ∨ z̄) ∧ (x̄ ∨ v ∨ z)
What is the corresponding graph and threshold for the independent
set problem?

3SAT → Independent Set - Example

Suppose that the input to 3SAT is the following Boolean formula:

(x ∨ y ∨ w) ∧ (x̄ ∨ z ∨ w̄) ∧ (ȳ ∨ v ∨ z̄) ∧ (x̄ ∨ v ∨ z)
What is the corresponding graph and threshold for the independent
set problem?

3SAT → Independent Set - Example

Suppose that the input to 3SAT is the following Boolean formula:
(x ∨ y ∨ w) ∧ (x̄ ∨ z ∨ w̄) ∧ (ȳ ∨ v ∨ z̄) ∧ (x̄ ∨ v ∨ z)

What is the corresponding graph and threshold for the independent
set problem?

3SAT → Independent Set - Example

Suppose that the input to 3SAT is the following Boolean formula:
(x ∨ y ∨ w) ∧ (x̄ ∨ z ∨ w̄) ∧ (ȳ ∨ v ∨ z̄) ∧ (x̄ ∨ v ∨ z)
What is the corresponding graph and threshold for the independent
set problem?

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V ,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover
Input: A graph G = (V ,E), and a value x .
Goal: Find a vertex cover with size x .

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V ,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover
Input: A graph G = (V ,E), and a value x .
Goal: Find a vertex cover with size x .

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover

Input: A graph G = (V ,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover
Input: A graph G = (V ,E), and a value x .
Goal: Find a vertex cover with size x .

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V ,E).

Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover
Input: A graph G = (V ,E), and a value x .
Goal: Find a vertex cover with size x .

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V ,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover
Input: A graph G = (V ,E), and a value x .
Goal: Find a vertex cover with size x .

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V ,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover
Input: A graph G = (V ,E), and a value x .
Goal: Find a vertex cover with size x .

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V ,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover

Input: A graph G = (V ,E), and a value x .
Goal: Find a vertex cover with size x .

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V ,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover
Input: A graph G = (V ,E), and a value x .

Goal: Find a vertex cover with size x .

Vertex Cover

Definition
A vertex cover is a subset of vertices of a graph such that every
edge is incident to at least one vertex in the set.

Vertex Cover
Input: A graph G = (V ,E).
Goal: Find a vertex cover of minimum size.

Now state as a decision problem:

Vertex Cover
Input: A graph G = (V ,E), and a value x .
Goal: Find a vertex cover with size x .

Independent Set → Vertex Cover

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is a vertex cover of a graph G if and only if the
vertices V \ S are an independent set of G .

Let I = (G , g), then f ((G , g)) = (G , |V | − g).
Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W ⊆ V (if one exists).
h(W) = V \W .
No solution for f (I) implies no solution to I .

Independent Set → Vertex Cover
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is a vertex cover of a graph G if and only if the
vertices V \ S are an independent set of G .

Let I = (G , g), then f ((G , g)) = (G , |V | − g).
Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W ⊆ V (if one exists).
h(W) = V \W .
No solution for f (I) implies no solution to I .

Independent Set → Vertex Cover
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is a vertex cover of a graph G if and only if the
vertices V \ S are an independent set of G .

Let I = (G , g), then f ((G , g)) = (G , |V | − g).
Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W ⊆ V (if one exists).
h(W) = V \W .
No solution for f (I) implies no solution to I .

Independent Set → Vertex Cover
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is a vertex cover of a graph G if and only if the
vertices V \ S are an independent set of G .

Let I = (G , g), then f ((G , g)) = (G , |V | − g).

Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W ⊆ V (if one exists).
h(W) = V \W .
No solution for f (I) implies no solution to I .

Independent Set → Vertex Cover
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is a vertex cover of a graph G if and only if the
vertices V \ S are an independent set of G .

Let I = (G , g), then f ((G , g)) = (G , |V | − g).
Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W ⊆ V (if one exists).

h(W) = V \W .
No solution for f (I) implies no solution to I .

Independent Set → Vertex Cover
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is a vertex cover of a graph G if and only if the
vertices V \ S are an independent set of G .

Let I = (G , g), then f ((G , g)) = (G , |V | − g).
Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W ⊆ V (if one exists).
h(W) = V \W .

No solution for f (I) implies no solution to I .

Independent Set → Vertex Cover
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is a vertex cover of a graph G if and only if the
vertices V \ S are an independent set of G .

Let I = (G , g), then f ((G , g)) = (G , |V | − g).
Suppose that there is a polynomial time algorithm for Vertex
Cover that returns solution W ⊆ V (if one exists).
h(W) = V \W .
No solution for f (I) implies no solution to I .

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):

Clique

Input: A graph G = (V ,E) and a value k .
Goal: Find a clique of size k in G .

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):

Clique

Input: A graph G = (V ,E) and a value k .
Goal: Find a clique of size k in G .

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):

Clique

Input: A graph G = (V ,E) and a value k .
Goal: Find a clique of size k in G .

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):

Clique

Input: A graph G = (V ,E) and a value k .
Goal: Find a clique of size k in G .

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):

Clique

Input: A graph G = (V ,E) and a value k .

Goal: Find a clique of size k in G .

Clique

Definition
A clique is a graph in which there is an edge between every two
vertices.

Example (K7):

Clique

Input: A graph G = (V ,E) and a value k .
Goal: Find a clique of size k in G .

Independent Set → Clique

Definition
The complement of a graph G = (V ,E) is the graph Ḡ = (V , Ē)
where Ē contains the possible edges of G that are not in E .

Example:

Independent Set → Clique

Definition
The complement of a graph G = (V ,E) is the graph Ḡ = (V , Ē)
where Ē contains the possible edges of G that are not in E .

Example:

Independent Set → Clique

Definition
The complement of a graph G = (V ,E) is the graph Ḡ = (V , Ē)
where Ē contains the possible edges of G that are not in E .

Example:

Independent Set → Clique

I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is an independent set of a graph G if and only if
the S is a clique of Ḡ .

Let I = (G , g), then f ((G , g)) = (Ḡ , g).
Suppose that there is a polynomial time algorithm for Clique
that returns solution W ⊆ V (if one exists).
h(W) = W .
No solution for f (I) implies no solution to I .

Independent Set → Clique
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is an independent set of a graph G if and only if
the S is a clique of Ḡ .

Let I = (G , g), then f ((G , g)) = (Ḡ , g).
Suppose that there is a polynomial time algorithm for Clique
that returns solution W ⊆ V (if one exists).
h(W) = W .
No solution for f (I) implies no solution to I .

Independent Set → Clique
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is an independent set of a graph G if and only if
the S is a clique of Ḡ .

Let I = (G , g), then f ((G , g)) = (Ḡ , g).
Suppose that there is a polynomial time algorithm for Clique
that returns solution W ⊆ V (if one exists).
h(W) = W .
No solution for f (I) implies no solution to I .

Independent Set → Clique
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is an independent set of a graph G if and only if
the S is a clique of Ḡ .

Let I = (G , g), then f ((G , g)) = (Ḡ , g).

Suppose that there is a polynomial time algorithm for Clique
that returns solution W ⊆ V (if one exists).
h(W) = W .
No solution for f (I) implies no solution to I .

Independent Set → Clique
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is an independent set of a graph G if and only if
the S is a clique of Ḡ .

Let I = (G , g), then f ((G , g)) = (Ḡ , g).
Suppose that there is a polynomial time algorithm for Clique
that returns solution W ⊆ V (if one exists).

h(W) = W .
No solution for f (I) implies no solution to I .

Independent Set → Clique
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is an independent set of a graph G if and only if
the S is a clique of Ḡ .

Let I = (G , g), then f ((G , g)) = (Ḡ , g).
Suppose that there is a polynomial time algorithm for Clique
that returns solution W ⊆ V (if one exists).
h(W) = W .

No solution for f (I) implies no solution to I .

Independent Set → Clique
I. These two translation procedures f and h imply that any algorithm for B can be converted
into an algorithm for A by bracketing it between f and h.

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I) No solution to I

h(S) of I
Solutionh

And now we can finally define the class of the hardest search problems.
A search problem is NP-complete if all other search problems reduce to it.

This is a very strong requirement indeed. For a problem to be NP-complete, it must be useful
in solving every search problem in the world! It is remarkable that such problems exist.
But they do, and the first column of the table we saw earlier is filled with the most famous
examples. In Section 8.3 we shall see how all these problems reduce to one another, and also
why all other search problems reduce to them.

The two ways to use reductions
So far in this book the purpose of a reduction from a problem A to a problem B has been
straightforward and honorable: We know how to solve B efficiently, and we want to use this
knowledge to solve A. In this chapter, however, reductions from A to B serve a somewhat
perverse goal: we know A is hard, and we use the reduction to prove that B is hard as well!

If we denote a reduction from A to B by

A −→ B

then we can say that difficulty flows in the direction of the arrow, while efficient algorithms
move in the opposite direction. It is through this propagation of difficulty that we know
NP-complete problems are hard: all other search problems reduce to them, and thus
each NP-complete problem contains the complexity of all search problems. If even one
NP-complete problem is in P, then P = NP.

Reductions also have the convenient property that they compose.

If A −→ B and B −→ C, then A −→ C .

To see this, observe first of all that any reduction is completely specified by the pre- and
postprocessing functions f and h (see the reduction diagram). If (fAB, hAB) and (fBC , hBC)
define the reductions from A to B and from B to C, respectively, then a reduction from A to
C is given by compositions of these functions: fBC ◦fAB maps an instance of A to an instance
of C and hAB ◦ hBC sends a solution of C back to a solution of A.
This means that once we know a problem A is NP-complete, we can use it to prove that

a new search problem B is also NP-complete, simply by reducing A to B. Such a reduction
establishes that all problems in NP reduce to B, via A.

245

Theorem
A set of vertices S is an independent set of a graph G if and only if
the S is a clique of Ḡ .

Let I = (G , g), then f ((G , g)) = (Ḡ , g).
Suppose that there is a polynomial time algorithm for Clique
that returns solution W ⊆ V (if one exists).
h(W) = W .
No solution for f (I) implies no solution to I .

What have we shown?

We have shown:
Independent Set is at least as hard as 3SAT.
Vertex Cover is at least as hard as Independent Set.
Clique is at least as hard as Independent Set.

CliqueVertex
Cover

Independent
Set

3SAT

What have we shown?

We have shown:

Independent Set is at least as hard as 3SAT.
Vertex Cover is at least as hard as Independent Set.
Clique is at least as hard as Independent Set.

CliqueVertex
Cover

Independent
Set

3SAT

What have we shown?

We have shown:
Independent Set is at least as hard as 3SAT.

Vertex Cover is at least as hard as Independent Set.
Clique is at least as hard as Independent Set.

CliqueVertex
Cover

Independent
Set

3SAT

What have we shown?

We have shown:
Independent Set is at least as hard as 3SAT.
Vertex Cover is at least as hard as Independent Set.

Clique is at least as hard as Independent Set.

CliqueVertex
Cover

Independent
Set

3SAT

What have we shown?

We have shown:
Independent Set is at least as hard as 3SAT.
Vertex Cover is at least as hard as Independent Set.
Clique is at least as hard as Independent Set.

CliqueVertex
Cover

Independent
Set

3SAT

What have we shown?

We have shown:
Independent Set is at least as hard as 3SAT.
Vertex Cover is at least as hard as Independent Set.
Clique is at least as hard as Independent Set.

CliqueVertex
Cover

Independent
Set

3SAT

