Divide and Conquer

- Theresa Migler-VonDollen

Divide and Conquer
L

Divide and Conquer is a strategy that solves a problem by:

Breaking the problem into subproblems that are themselves
smaller instances of the same type of problem.

Recursively solving these subproblems.

Appropriately combining their answers.

Searching
L

Input: A list of sorted numbers, A = [ag, a1, a2, a3, ...a,—1] and a
number x.

Goal: Return the position of x in A or return a statement that x is
not in the list.

How would a four year old do this?
How would a 2nd grader do this?

How would you do it?

BinarySearch
L

BinarySearch(A, x, min, max)

Input: An array of sorted numbers A, values x, min, and max.
Output: The position of x in A, or a statement that x is not in A.
(Initially min = 0 and max = n — 1)
1: if max < min then
return “x ¢ A"
2: else
if x < A[|(max 4+ min)/2]] then
return BinarySearch(A, x, min,|(max + min)/2| — 1)
4: else if x > A[|(max + min)/2]] then
return BinarySearch(A, x ,[(max + min)/2| + 1, max)
5: else
return |[(max + min)/2|

@

BinarySearch
L

We must ask ourselves two questions about this algorithm:
Is it correct?

What is the running time?

O At each stage we divide the problem in half and it takes
constant time to “combine” solutions:

O 7(n)=T(n/2)+ O(1)

BinarySearch - Correctness

Is it correct?

Lemma

If x is an element in the list, BinarySearch will return the correct
position of x.

Do we need a better statement of the lemma?

Proof.

By induction, in class. O

Lemma

If x is not an element of the list, BinarySearch will return that there
is no such element in the list.

Running Time
.

Again, for any algorithm there are two (maybe three) important
things to prove:

Is it correct?

How fast is it?

(Maybe) How much space does it take?
Example:
Compare f(x) = 5x + 100 with g(x) = x>

If these functions represent running times, which is faster?
We need to formalize what we mean by “faster”.
O “Big O” notation.

Big O Notation
.

Big O notation describes the limiting behavior of a function
when the input gets very large.
Big O notation characterizes functions according to their
growth rates:

O Functions with the same growth rate may be represented using

the same O notation.

When we make statements such as,
f(x) =2x3 —7x+ 14 = O(x%):

O The first equals sign really means equality.

O The second equals sign represents set inclusion.

Big O Notation
.

Rough Guide

class in English meaning key phrases

f(n) = o(g(n)) little-oh f(n) << g(n) | f(n)is asymptotically better than g(n)
f(n) grows slower than g(n)

f(n) = O(g(n)) big-oh f(n) < g(n) | f(n) is asymptotically no worse than g(n)
f(n) grows no faster than g(n)

f(n) =0©(g(n)) | big-theta f(n) ~ g(n) | f(n)is asymptotically equivalent to g(n)
f(n) grows the same as g(n)

f(n) =Q(g(n)) | big-omega | f(n) > g(n) | f(n) is asymptotically no better than g(n)
f(n) grows at least as fast as g(n)

f(n) = w(g(n)) | little-omega | f(n) >> g(n) f(n) is asymptotically worse than g(n)
f(n) grows faster than g(n)

Big O Notation
.

Formal Definitions

class formally working
f(n) = o(g(n)) limp o0 20 = 0 f(n) = O(g(n)) but
g(n) # O(f(n))

f(n) = O(g(n)) dc >0, 3ng, ¥Yn > ng, f(n) < c-g(n)

f(n) =0©(g(n)) | lim,5eo % = some finite, non-zero constant | f(n) = O(g(n)) and
g(n) = O(f(n))

f(n) =Q(g(n)) dc > 0, Jno, Yn > no,c-g(n) < f(n) g(n) = O(f(n))

f(n) = w(g(n)) lim o0 £ = 00 g(n) = O(f(n)) but

f(n) # O(g(n))

Big O Notation
.

Practical tricks:

If £(x) is a sum of several terms, then the one with the largest
growth rate is kept, and all others omitted.

If f(x) is a product of several factors, any constants are
omitted.

For the following examples determine if f = O(g), f = Q(g), or
both (f = ©(g)):

f(x) = 4x? and g(x) =1, 000x2 + 12x + 7

f(x) = x23% and g(x) = &

f(x) = 2% and g(x) = x!

f(x) = 10log x and g(x) = log x®

Recurrence Relations
1

You have two main choices when it comes to solving recurrence
relations:

The tree method (my favorite)
The Master Theorem
O If T(n)=aT([n/b])+ O(n9) for a>0,b>1,d > 0 then:

T(n) = O(n%) if d > log, a
T(n) = O(n%logn) if d = log, a
T(n) = O(n'"&?) if d < log, a

Recurrence Relations - Binary Search

.
T(n) = T(n/2)+ O(1)

work
[n 1
n/2 1
n/4 1
logs(n)
n/8 1
. 1 1

=0(1+14---4+1)= O(logy(n))

Recurrence Relations - Merge Sort
.

T(n)=2T(n/2)+ O(n)

n/2+n/2=n

n/4 n/4 +n/4 +n/4+n/4=n

log,(n) n/8 /8 8(n/8) =n

11 1 1

=O0(n+n+n+---+n)= O(nlogy(n))

Recurrence Relations - More Practice
S

T(n) =2T(n/2) + O(n?)

/22 + (/22 = n?/2

n/4 2

(/42 + (/42 + (/42 + (Va2 = n2/4

logo(n)
2 n/8 n/8 8*(n/8)2 - n2s

L o000 - - @ @2 = n
11 11

1

= 0(n*+n?/2+ n?/4+ n?/8---+ n*/n) < O(2n?) = O(n?)

Recurrence Relations - More Practice

e
T(n)=2T(n/2)+ O(1)

1+1=2
1+1+141 =4

tog2) /8 1+1+1+1414141+1 =8

1111 1
=0(1+2+4+---+n)=0(n+n/24+n/4+n/8+---+n/n) <
O(2n) = O(n)

Recurrence Relations - Reduce by One

| e ,
=0(l+1+1+---+1)=0(n)

Recurrence Relations - Reduce by One
L

T(n)=T(n—-1)+ O(n)

n-1 n-1

n-2 n-2

n-3 n-3
Q® n-(n-1) =1

%

= O(n+(n—=1)+(n—2)+(n—3)+- - -+(n—(n—2))+(n—(n—1)))
0(n?/2) = O(n?)

Matrix Multiplication

Who remembers how to multiply two n x n matrices together?
Example:

N O =
= = O
W w
= o1
w = N
w o =

What algorithm did you use?
What is the running time?

Matrix Multiplication

Matrix Multiplication

Input: Two n x n matrices, X and Y.
Goal: Return the product XY'.

To simplify analysis, suppose that n is a power of 2.

Matrix Multiplication
.

MMult(X,Y)

Input: Two n x n matrices, X and Y, (where nis a power of 2)
Output: The product XY
Lifn=1(i.e. X=(x),Y =(y)) then
return (x X y)
2: else Decompose X and Y into four n/2 x n/2 blocks each:

A B E F
~(¢o)v-(cn)
. MMult(A, E) + MMult(B,G) MMult(A, F) + MMult(B, H)
PN MMult(C, E) + MMult(D, G) MMult(C, F) + MMult(D, H)

Matrix Multiplication
L
Is the algorithm correct?
What is the running time?
O 7(n) =8T(n/2) + O(n*)= O(n?)
O There was no improvement from the linear algebra method.
There is a way to only perform 7 multiplications (Strassen's
method).

xy — [Pst+Pa—P2tPe P1+ P>
B P3 + P4 P1+ Ps — Ps— P7

Where: P = A(F — H), P.=(A+ B)H, P3 = (C + D)E,
Py =D(G —E), Ps =(A+ D)(E + H),
Ps = (B—D)(G+ H), and P; =(A— C)(E+ F).

O Then T(n) =7T(n/2) + O(n?)= O(n*%).

There exists an O(n?3727)

Williams).

algorithm (Virginia Vassilevska

Sorting

Sorting

Input: A list of numbers, a1, a5, a3, ... ap.
Goal: Return a list of the same numbers sorted in increasing order.

Example:
Given: 4,907,34,18,42,36,71,34,16
Return: 4,16, 18,34, 34, 36,42,71,907

SelectionSort
1

Input: A list of numbers, a1, a2, a3, ... an.
Goal: Return a list of the same numbers sorted in increasing order.

We will start with a straightforward algorithm:

SelectionSort(A[0, ..., n—1])

Input: A list of unsorted numbers A[0,...,n —1]
Output: The same list sorted in increasing order
1: fori=0,...,n—1do
2: Find min of A[i,...,n—1].
3: Suppose that the min occurs at position j.
4: Swap A[i] with A[j].

SelectionSort - Correctness
1

Upon completion of SelectionSort, for any i € {1,...,n— 1},
Ali — 1] < A[i]. Furthermore, all elements of the input list are in A.

Suppose, for a contradiction, that there is a j such that upon
completion of SelectionSort, A[j — 1] > A[j].

Let Aj — 1] = x and A[j] = y.

At iteration j — 1 of the algorithm, A[j — 1] was set to be x (step 4).
Thus, at iteration j — 1, x must have been the smallest remaining
element (step 2).

Contradiction. Because y was a remaining element at iteration
j—1land y < x. O

How can we show that all elements of the input list are in A?

SelectionSort - Running Time
L

Running Time:
O 7(n)=T(n—1)+ O(n) = O(n?)

MergeSort
L

Input: A list of numbers, ai, as, a3, . .. ap.
Goal: Return a list of the same numbers sorted in increasing order.

MergeSort(A[0, ..., n —1])

Input: A list of unsorted numbers A[0,...,n — 1]
Output: The same list, sorted in increasing order
1: if n <1 then
return A
2: else
return Merge(MergeSort(A[0, ..., | n/2]]),MergeSort(A[| n/2]+
1,...,n—=1]))

MergeSort
L

Input: A sequence of numbers, aj, ap, as, . .. a,.
Goal: Return a list of the same numbers sorted in increasing order.

Merge(x[O0, ...,k —1],y[0,..., ¢ —1])

Input: Two sorted lists, x[0,..., k — 1] and y[0,...,¢ — 1]
Output: One sorted list that contains all elements of both lists.
1. if x =0 then return y

N

if y =0 then return x
. if x[0] < y[0] then
return x[0]oMerge(x[1,...,k —1],y[0,...,¢ —1])
4: else
return y[0]oMerge(x[0, ...,k —1],y[1,...,£—1])

w

MergeSort - Correctness

Theorem

Merge correctly merges two sorted lists.

Theorem

Given two sorted lists, x and y, of total size n Merge returns a
sorted list containing all elements from x and y.

Proof.

We will procede by induction on the total size of the lists being
merged.
I Base Case: (n=1)

This will only occur if either x or y is empty, and the other list
has exactly 1 element.

O Merge correctly merges the empty list with any other sorted
list (steps 1 and 2).

MergeSort - Correctness

Inductive Hypothesis: Suppose that, given two sorted lists, x
and y, of total size h Merge returns a sorted list containing all
elements from x and y.

Inductive Step: Consider two sorted lists with total size h+ 1.

O In steps 3 and 4 of the algorithm, Merge correctly places the
smallest element at the beginning of the list.
O Merge then concatenates that element with the Merge of the
remaining elements of the two lists.
The total size of the remaining two lists is h.
By the Inductive Hypothesis, Merge correctly merges the

remainder.
Conclusion: Therefore, by PMI, Merge correctly merges two
sorted lists.

MergeSort - Running Time
L

What is the running time?
O T(n)=2T(n/2)+ O(n) = O(nlogn)

Median Finding

Definition
The median of a list of numbers is its 50th percentile. Half the

numbers are bigger than the median and half the numbers are
smaller.

For example, suppose the list of numbers is 14,2,3,2,7.
The median is 3.

What if the list is even?

We choose the smaller of the two middle elements.

Median Finding

Input: A list of numbers, a7, as, a3, ... ap.
Goal: Return the median element.

Any ideas?

Selection
1

It is surprisingly easier to consider a more general problem,
selection.

Input: A list of numbers, a1, a2, a3, ... a, and an integer k.
Goal: Return the kth smallest element of a1, ap, a3, ... a,.

If k=1, then the minimum element is returned.
If k = n, then the maximum element is returned.
If k = [7], then the median is returned.

Randomized Selection

.
RandomSelection(A[L, ..., n], k)

Input: A list of unsorted numbers A[1, ..., n] and an integer k.
Output: The kth smallest element of A.
1: if n <1 then
return A
else
Randomly choose an element from A, call it x.
4: Let A; be the numbers in the list less than x, Ag be the
numbers in the list greater than x, and A, be the numbers in
the list equal to x.

5: if kK <|AL| then return RandomSelection(A, k)
6: if |AL] < k < |AL] + |A«| then return x
7: else return RandomSelection(Ag, k — |AL| — |Ax|)

RandomSelection
1

What is the running time?

We can build, A;, Ag, and A, in linear time. If we could choose x
so that roughly half of the elements in the list are in A; and the
other half are in Ag, then our running time would be:

T(n) = T(n/2)+ O(n) = O(n)

But that would only work if x is the median!

Worst Case?

O In the worst case, we may select x to be the largest or smallest
element over and over - that would only shrink our list by one
at each iteration:

T(n)= T(n—1)+ O(n) = O(n?)
Luckily it turns out this is highly unlikely.

Average Case?

RandomSelection Average Case Running Time

L
Let's call a choice of x “good” if it lies within the 25th to 75th

percentile. Then:

|AL| < 3/4|A| and Ag < 3/4[A|

How many x values do we have to pick (on average) before a good
one is found?

On average a fair coin needs to be tossed twice before a “heads” is
seen.

The proof hinges on the fact that if E is the expected number of
tosses before a heads is seen, E =1 + %E.

Therefore, on average, after two choices of x, the array will be
reduced to at most 3/4 its original size.

The expected running time is:
T(n) < T(3n/4)+ O(n) = O(n)

RandomSelection Correctness

With randomized algorithms, it's important to check that the
algorithm terminates.
Does RandomSelection terminate?

Lemma

Given a list, A, of size n and a value, k, RandomSelection(A, k)
correctly finds the kth smallest element of A.

Proof.

Use induction over n. O

In Class Exercise: Peaks

Suppose you are given a list, A, with n entries, each entry holding a
distinct number. You are told that the sequence of values

A[1], A[2],. .., A[n] is unimodal: For some index, p, between 1 and
n, the values of the list increase up to position p and decrease until
position n.

Find the "peak" entry.

Is your algorithm correct?

What is the running time?

Peaks - Pseudocode
1

FindPeaks(A[1, ..., n])

Input: A unimodal list of distinct numbers A[1, ..., n].
Output: The peak entry.
1. if |A] =1 then
return A[1]
2: if |A| =2 then
return max{A[1], A[2]}
3: mid = [n/2]
4: if A[mid] > A[mid — 1] AND A[mid] > A[mid + 1] then
return A[mid|
5. else if A[mid] > A[mid — 1] AND A[mid] < A[mid + 1] then
return FindPeaks(A[mid, ... n])
6: else if A[mid] < Almid — 1] AND A[mid] > A[mid + 1] then
return FindPeaks(A[L,..., mid])

Peaks - Running Time

We reduce a problem of size n to a single problem of size n/2.

There are a constant number of comparisons at each level of
recursion.

T(n) = T(n/2) 4+ O(1) = O(log, n)

Peaks - Correctness
1

FindPeaks correctly finds the peak in a unimodal list of n distinct
numbers.

We proceed by strong induction.
Base Cases:

O If there is one element (as in part 1 of FindPeaks), then
FindPeaks correctly returns that element.

O If there are two elements (as in part 2 of FindPeaks), then the
larger of the two is the peak and FindPeaks correctly returns it.

Induction Hypothesis:

O Suppose that FindPeaks correctly finds the peak in a unimodal
list of less than or equal to k distinct numbers.

Peaks - Correctness
1

FindPeaks correctly finds the peak in a unimodal list of n distinct
numbers.

Consider a unimodal list of k + 1 distinct numbers.

O If the midpoint (mid = [(k + 1)/2]) is the peak, then
A[mid] > Almid — 1] and A[mid] > A[mid + 1]. FindPeaks will
correctly return A[mid].

O If mid is among the increasing portion of the list
(A[mid] > Almid — 1] and A[mid] < A[mid + 1]), then the
peak is in the second half of the list (A[mid, ..., k]).
FindPeaks returns FindPeaks(A[mid, ..., n]), which, by the
induction hypothesis correctly finds the peak because the list
has size less than or equal to k.

Peaks - Correctness
1

FindPeaks correctly finds the peak in a unimodal list of n distinct
numbers.

O If mid is among the decreasing portion of the list
(A[mid] < A[mid — 1] and A[mid] > A[mid + 1]), then the
peak is in the first half of the list (A[L, ..., mid]).
FindPeaks returns FindPeaks(A[L, ..., mid]), which, by the
induction hypothesis correctly finds the peak because the list
has size less than or equal to n.

Therefore, by the principle of mathematical induction, we have
the result.

Ol

