
Divide and Conquer

CPE 349 Theresa Migler-VonDollen

Divide and Conquer

Divide and Conquer is a strategy that solves a problem by:
1 Breaking the problem into subproblems that are themselves

smaller instances of the same type of problem.
2 Recursively solving these subproblems.
3 Appropriately combining their answers.

Searching

Search
Input: A list of sorted numbers, A = [a0, a1, a2, a3, . . . an−1] and a
number x .
Goal: Return the position of x in A or return a statement that x is
not in the list.

How would a four year old do this?
How would a 2nd grader do this?
How would you do it?

BinarySearch

BinarySearch(A, x , min, max)

Input: An array of sorted numbers A, values x , min, and max.
Output: The position of x in A, or a statement that x is not in A.

(Initially min = 0 and max = n − 1)
1: if max < min then

return “x /∈ A”
2: else
3: if x < A[b(max + min)/2c] then

return BinarySearch(A, x , min,b(max + min)/2c − 1)
4: else if x > A[b(max + min)/2c] then

return BinarySearch(A, x ,b(max + min)/2c+ 1,max)
5: else

return b(max + min)/2c

BinarySearch

We must ask ourselves two questions about this algorithm:
Is it correct?
What is the running time?

At each stage we divide the problem in half and it takes
constant time to “combine” solutions:
T (n) = T (n/2) + O(1)

BinarySearch - Correctness

Is it correct?

Lemma
If x is an element in the list, BinarySearch will return the correct
position of x .

Do we need a better statement of the lemma?

Proof.
By induction, in class.

Lemma
If x is not an element of the list, BinarySearch will return that there
is no such element in the list.

Running Time

Again, for any algorithm there are two (maybe three) important
things to prove:

Is it correct?
How fast is it?
(Maybe) How much space does it take?

Example:
Compare f (x) = 5x + 100 with g(x) = x2

If these functions represent running times, which is faster?
We need to formalize what we mean by “faster”.

“Big O” notation.

Big O Notation

Big O notation describes the limiting behavior of a function
when the input gets very large.
Big O notation characterizes functions according to their
growth rates:

Functions with the same growth rate may be represented using
the same O notation.

When we make statements such as,
f (x) = 2x3 − 7x + 14 = O(x3):

The first equals sign really means equality.
The second equals sign represents set inclusion.

Big O Notation

Rough Guide
class in English meaning key phrases

f (n) = o(g(n)) little-oh f (n) << g(n) f (n) is asymptotically better than g(n)
f (n) grows slower than g(n)

f (n) = O(g(n)) big-oh f (n) ≤ g(n) f (n) is asymptotically no worse than g(n)
f (n) grows no faster than g(n)

f (n) = Θ(g(n)) big-theta f (n) ≈ g(n) f (n) is asymptotically equivalent to g(n)
f (n) grows the same as g(n)

f (n) = Ω(g(n)) big-omega f (n) ≥ g(n) f (n) is asymptotically no better than g(n)
f (n) grows at least as fast as g(n)

f (n) = ω(g(n)) little-omega f (n) >> g(n) f (n) is asymptotically worse than g(n)
f (n) grows faster than g(n)

Big O Notation

Formal Definitions
class formally working

f (n) = o(g(n)) limn→∞
f (n)
g(n) = 0 f (n) = O(g(n)) but

g(n) 6= O(f (n))

f (n) = O(g(n)) ∃c > 0, ∃n0, ∀n > n0, f (n) ≤ c · g(n)

f (n) = Θ(g(n)) limn→∞
f (n)
g(n) = some finite, non-zero constant f (n) = O(g(n)) and

g(n) = O(f (n))

f (n) = Ω(g(n)) ∃c > 0, ∃n0, ∀n > n0, c · g(n) ≤ f (n) g(n) = O(f (n))

f (n) = ω(g(n)) limn→∞
f (n)
g(n) =∞ g(n) = O(f (n)) but

f (n) 6= O(g(n))

Big O Notation

Practical tricks:
If f (x) is a sum of several terms, then the one with the largest
growth rate is kept, and all others omitted.
If f (x) is a product of several factors, any constants are
omitted.

Example

For the following examples determine if f = O(g), f = Ω(g), or
both (f = Θ(g)):

1 f (x) = 4x2 and g(x) = 1, 000x2 + 12x + 7
2 f (x) = x23x and g(x) = 4x

3 f (x) = 2x and g(x) = x!

4 f (x) = 10 log x and g(x) = log x2

Recurrence Relations

You have two main choices when it comes to solving recurrence
relations:

The tree method (my favorite)
The Master Theorem

If T (n) = aT (dn/be) + O(nd) for a > 0, b > 1, d ≥ 0 then:
T (n) = O(nd) if d > logb a
T (n) = O(nd log n) if d = logb a
T (n) = O(nlogb a) if d < logb a

Recurrence Relations - Binary Search

T (n) = T (n/2) + O(1)

n

n/4

n/2

n/8

log2(n)

work

.

.
1

1

1

1

1

1

.

.

= O(1 + 1 + · · ·+ 1) = O(log2(n))

Recurrence Relations - Merge Sort

T (n) = 2T (n/2) + O(n)

n

n/2

n/4

n/8

n/4n/4n/4

n/2

n/8
n/8 n/8 n/8 n/8 n/8 n/8

log2(n)

work

n

n/2 + n/2 = n

n/4 + n/4 + n/4 + n/4 = n

8*(n/8) =n

.

.

.
n

.

.

.

.

.

.

.

.

.
1 1111

= O(n + n + n + · · ·+ n) = O(n log2(n))

Recurrence Relations - More Practice

T (n) = 2T (n/2) + O(n2)

n

n/2

n/4

n/8

n/4n/4n/4

n/2

n/8
n/8 n/8 n/8 n/8 n/8 n/8

log2(n)

work

n2

(n/2)2 + (n/2)2 = n2/2

(n/4)2 + (n/4)2 + (n/4)2 + (n/4)2 = n2/4

8*(n/8)2 = n2/8
.
.
.

n*(1)2 = n

.

.

.

.

.

.

.

.

.
1 1111

= O(n2 + n2/2 + n2/4 + n2/8 · · ·+ n2/n) ≤ O(2n2) = O(n2)

Recurrence Relations - More Practice

T (n) = 2T (n/2) + O(1)

n

n/2

n/4

n/8

n/4n/4n/4

n/2

n/8
n/8 n/8 n/8 n/8 n/8 n/8

log2(n)

work

1

1+1 = 2

1+1+1+1 = 4

1+1+1+1+1+1+1+1 = 8

.

.

.
n

.

.

.

.

.

.

.

.

.
1 1111

= O(1 + 2 + 4 + · · ·+ n) = O(n + n/2 + n/4 + n/8 + · · ·+ n/n) ≤
O(2n) = O(n)

Recurrence Relations - Reduce by One

T (n) = T (n − 1) + O(1)

n

n-2

n-1

n-3

n

work

.

.
1

1

1

1

1

1

.

.

= O(1 + 1 + 1 + · · ·+ 1) = O(n)

Recurrence Relations - Reduce by One

T (n) = T (n − 1) + O(n)

n

n-2

n-1

n-3

n

work

.

.
1

n

n-2

n-1

n-3

n-(n-1) = 1

.

.

= O(n+(n−1)+(n−2)+(n−3)+· · ·+(n−(n−2))+(n−(n−1))) ≈
O(n2/2) = O(n2)

Matrix Multiplication

Who remembers how to multiply two n × n matrices together?
Example:  1 0 7

0 1 3
2 1 3

 1 2 1
5 1 0
1 3 3


What algorithm did you use?
What is the running time?

Matrix Multiplication

Matrix Multiplication

Input: Two n × n matrices, X and Y .
Goal: Return the product XY .

To simplify analysis, suppose that n is a power of 2.

Matrix Multiplication

MMult(X,Y)

Input: Two n × n matrices, X and Y , (where n is a power of 2)
Output: The product XY
1: if n = 1 (i.e. X = (x),Y = (y)) then

return
(
x × y

)
2: else Decompose X and Y into four n/2× n/2 blocks each:

X =

(
A B
C D

)
,Y =

(
E F
G H

)

return
(

MMult(A,E) + MMult(B,G) MMult(A,F) + MMult(B,H)
MMult(C ,E) + MMult(D,G) MMult(C ,F) + MMult(D,H)

)

Matrix Multiplication

Is the algorithm correct?
What is the running time?

T (n) = 8T (n/2) + O(n2)= O(n3)
There was no improvement from the linear algebra method.

There is a way to only perform 7 multiplications (Strassen’s
method).

XY =

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

)
Where: P1 = A(F − H), P2 = (A + B)H, P3 = (C + D)E ,
P4 = D(G − E), P5 = (A + D)(E + H),
P6 = (B − D)(G + H), and P7 = (A− C)(E + F).

Then T (n) = 7T (n/2) + O(n2)= O(n2.81).

There exists an O(n2.3727) algorithm (Virginia Vassilevska
Williams).

Sorting

Sorting

Input: A list of numbers, a1, a2, a3, . . . an.
Goal: Return a list of the same numbers sorted in increasing order.

Example:
Given: 4, 907, 34, 18, 42, 36, 71, 34, 16
Return: 4, 16, 18, 34, 34, 36, 42, 71, 907

SelectionSort

Sorting

Input: A list of numbers, a1, a2, a3, . . . an.
Goal: Return a list of the same numbers sorted in increasing order.

We will start with a straightforward algorithm:

SelectionSort(A[0, . . . , n − 1])

Input: A list of unsorted numbers A[0, . . . , n − 1]
Output: The same list sorted in increasing order
1: for i = 0, . . . , n − 1 do
2: Find min of A[i , . . . , n − 1].
3: Suppose that the min occurs at position j .
4: Swap A[i] with A[j].

SelectionSort - Correctness

Lemma
Upon completion of SelectionSort, for any i ∈ {1, . . . , n − 1},
A[i − 1] ≤ A[i]. Furthermore, all elements of the input list are in A.

Proof.
Suppose, for a contradiction, that there is a j such that upon
completion of SelectionSort, A[j − 1] > A[j].
Let A[j − 1] = x and A[j] = y .
At iteration j − 1 of the algorithm, A[j − 1] was set to be x (step 4).
Thus, at iteration j − 1, x must have been the smallest remaining
element (step 2).
Contradiction. Because y was a remaining element at iteration
j − 1 and y < x .

How can we show that all elements of the input list are in A?

SelectionSort - Running Time

Running Time:
T (n) = T (n − 1) + O(n) = O(n2)

MergeSort

Sorting

Input: A list of numbers, a1, a2, a3, . . . an.
Goal: Return a list of the same numbers sorted in increasing order.

MergeSort(A[0, . . . , n − 1])

Input: A list of unsorted numbers A[0, . . . , n − 1]
Output: The same list, sorted in increasing order
1: if n ≤ 1 then

return A
2: else

returnMerge(MergeSort(A[0, . . . , bn/2c]),MergeSort(A[bn/2c+
1, . . . , n − 1]))

MergeSort

Sorting
Input: A sequence of numbers, a1, a2, a3, . . . an.
Goal: Return a list of the same numbers sorted in increasing order.

Merge(x [0, . . . , k − 1],y [0, . . . , `− 1])

Input: Two sorted lists, x [0, . . . , k − 1] and y [0, . . . , `− 1]
Output: One sorted list that contains all elements of both lists.
1: if x = ∅ then return y

2: if y = ∅ then return x

3: if x [0] ≤ y [0] then
return x [0]◦Merge(x [1, . . . , k − 1], y [0, . . . , `− 1])

4: else
return y [0]◦Merge(x [0, . . . , k − 1], y [1, . . . , `− 1])

MergeSort - Correctness

Theorem
Merge correctly merges two sorted lists.

Theorem
Given two sorted lists, x and y , of total size n Merge returns a
sorted list containing all elements from x and y .

Proof.
We will procede by induction on the total size of the lists being
merged.

Base Case: (n = 1)
This will only occur if either x or y is empty, and the other list
has exactly 1 element.

Merge correctly merges the empty list with any other sorted
list (steps 1 and 2).

MergeSort - Correctness

Proof (Cont.)

Inductive Hypothesis: Suppose that, given two sorted lists, x
and y , of total size h Merge returns a sorted list containing all
elements from x and y .
Inductive Step: Consider two sorted lists with total size h + 1.

In steps 3 and 4 of the algorithm, Merge correctly places the
smallest element at the beginning of the list.
Merge then concatenates that element with the Merge of the
remaining elements of the two lists.

The total size of the remaining two lists is h.
By the Inductive Hypothesis, Merge correctly merges the
remainder.

Conclusion: Therefore, by PMI, Merge correctly merges two
sorted lists.

MergeSort - Running Time

What is the running time?
T (n) = 2T (n/2) + O(n) = O(n log n)

Median Finding

Definition
The median of a list of numbers is its 50th percentile. Half the
numbers are bigger than the median and half the numbers are
smaller.

For example, suppose the list of numbers is 14, 2, 3, 2, 7.
The median is 3.
What if the list is even?
We choose the smaller of the two middle elements.

Median Finding

Input: A list of numbers, a1, a2, a3, . . . an.
Goal: Return the median element.

Any ideas?

Selection

It is surprisingly easier to consider a more general problem,
selection.

Selection
Input: A list of numbers, a1, a2, a3, . . . an and an integer k .
Goal: Return the kth smallest element of a1, a2, a3, . . . an.

If k = 1, then the minimum element is returned.
If k = n, then the maximum element is returned.
If k = bn2c, then the median is returned.

Randomized Selection

RandomSelection(A[1, . . . , n], k)

Input: A list of unsorted numbers A[1, . . . , n] and an integer k .
Output: The kth smallest element of A.
1: if n ≤ 1 then

return A
2: else
3: Randomly choose an element from A, call it x .
4: Let AL be the numbers in the list less than x , AR be the

numbers in the list greater than x , and Ax be the numbers in
the list equal to x .

5: if k ≤ |AL| then return RandomSelection(AL, k)
6: if |AL| ≤ k ≤ |AL|+ |Ax | then return x
7: else return RandomSelection(AR , k − |AL| − |Ax |)

RandomSelection

What is the running time?
We can build, AL,AR , and Ax in linear time. If we could choose x
so that roughly half of the elements in the list are in AL and the
other half are in AR , then our running time would be:
T (n) = T (n/2) + O(n) = O(n)
But that would only work if x is the median!

Worst Case?
In the worst case, we may select x to be the largest or smallest
element over and over - that would only shrink our list by one
at each iteration:
T (n) = T (n − 1) + O(n) = O(n2)
Luckily it turns out this is highly unlikely.

Average Case?

RandomSelection Average Case Running Time

Let’s call a choice of x “good” if it lies within the 25th to 75th
percentile. Then:
|AL| ≤ 3/4|A| and AR ≤ 3/4|A|
How many x values do we have to pick (on average) before a good
one is found?

Lemma
On average a fair coin needs to be tossed twice before a “heads” is
seen.

The proof hinges on the fact that if E is the expected number of
tosses before a heads is seen, E = 1 + 1

2E .
Therefore, on average, after two choices of x , the array will be
reduced to at most 3/4 its original size.
The expected running time is:
T (n) ≤ T (3n/4) + O(n) = O(n)

RandomSelection Correctness

With randomized algorithms, it’s important to check that the
algorithm terminates.
Does RandomSelection terminate?

Lemma
Given a list, A, of size n and a value, k , RandomSelection(A, k)
correctly finds the kth smallest element of A.

Proof.
Use induction over n.

In Class Exercise: Peaks

Peaks
Suppose you are given a list, A, with n entries, each entry holding a
distinct number. You are told that the sequence of values
A[1],A[2], . . . ,A[n] is unimodal: For some index, p, between 1 and
n, the values of the list increase up to position p and decrease until
position n.

Find the "peak" entry.

Is your algorithm correct?
What is the running time?

Peaks - Pseudocode

FindPeaks(A[1, . . . , n])

Input: A unimodal list of distinct numbers A[1, . . . , n].
Output: The peak entry.
1: if |A| = 1 then

return A[1]

2: if |A| = 2 then
return max{A[1],A[2]}

3: mid = dn/2e
4: if A[mid] > A[mid − 1] AND A[mid] > A[mid + 1] then

return A[mid]
5: else if A[mid] > A[mid − 1] AND A[mid] < A[mid + 1] then

return FindPeaks(A[mid , . . . n])
6: else if A[mid] < A[mid − 1] AND A[mid] > A[mid + 1] then

return FindPeaks(A[1, . . . ,mid])

Peaks - Running Time

We reduce a problem of size n to a single problem of size n/2.
There are a constant number of comparisons at each level of
recursion.
T (n) = T (n/2) + O(1) = O(log2 n)

Peaks - Correctness

Theorem
FindPeaks correctly finds the peak in a unimodal list of n distinct
numbers.

Proof.
We proceed by strong induction.

Base Cases:
If there is one element (as in part 1 of FindPeaks), then
FindPeaks correctly returns that element.
If there are two elements (as in part 2 of FindPeaks), then the
larger of the two is the peak and FindPeaks correctly returns it.

Induction Hypothesis:
Suppose that FindPeaks correctly finds the peak in a unimodal
list of less than or equal to k distinct numbers.

Peaks - Correctness

Theorem
FindPeaks correctly finds the peak in a unimodal list of n distinct
numbers.

Proof (Cont.)

Consider a unimodal list of k + 1 distinct numbers.
If the midpoint (mid = d(k + 1)/2e) is the peak, then
A[mid] > A[mid − 1] and A[mid] > A[mid + 1]. FindPeaks will
correctly return A[mid].
If mid is among the increasing portion of the list
(A[mid] > A[mid − 1] and A[mid] < A[mid + 1]), then the
peak is in the second half of the list (A[mid , . . . , k]).
FindPeaks returns FindPeaks(A[mid , . . . , n]), which, by the
induction hypothesis correctly finds the peak because the list
has size less than or equal to k .

Peaks - Correctness

Theorem
FindPeaks correctly finds the peak in a unimodal list of n distinct
numbers.

Proof (Cont.)

If mid is among the decreasing portion of the list
(A[mid] < A[mid − 1] and A[mid] > A[mid + 1]), then the
peak is in the first half of the list (A[1, . . . ,mid]).
FindPeaks returns FindPeaks(A[1, . . . ,mid]), which, by the
induction hypothesis correctly finds the peak because the list
has size less than or equal to n.

Therefore, by the principle of mathematical induction, we have
the result.

