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Graph Theory

Father of graph theory: Leonhard Euler

Swiss mathematician
Seven Bridges of Königsberg 1736.



Seven Bridges of Königsberg

Is there a walk that traverses each bridge exactly once?



What is a graph?

Vertices and edges.
Nodes and links.
People and relationships.



Seven Bridges of Königsberg

Theorem
There is a walk through a graph that traverses each edge exactly
once if and only if the graph is connected and there are exactly two
or zero vertices of odd degree.



What is a graph? - Dolphin network
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What is a graph? - Friends network
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What is a graph? - Karate network
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What is a graph? - Les Misérables network
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What is a graph? - Actors network
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Types of networks

Collaboration networks
Who-talks-to-whom graphs
Information linkage graphs
Technological networks
Biological networks



Graph Basics

A

B

C

D

E

F

G
H I

J

K

L

M

N

Definition
A vertex A and a vertex B are neighbors if there is an edge, AB ,
between A and B .

D is neighbors with E , F , and C , but not B .



Basic Graph Representations

There are two basic ways to represent a graph, G = (V ,E ),
V = {v1, v2, . . . vn}:

1 An adjacency matrix is an n × n array where the (i , j) entry is:
aij = 1 if there is an edge from vi to vj .
aij = 0 otherwise.

2 An adjacency list is a set of n linked lists, one for each vertex.
The linked list for vertex v holds the names of all vertices, u,
such that there is an edge from v to u.

What is the size of each data structure?
How long does it take to find a particular edge for each data
structure?



Basic ways to describe a graph
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Definition
The degree of a vertex is the number of edges adjacent to it (or the
number of neighbors).

C has degree 7. J has degree 1.



Graph Basics
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Definition
The degree distribution of a graph is the number of vertices of each
degree.

{0, 2, 4, 4, 2, 1, 0, 1} or {0, 1/7, 2/7, 2/7, 1/7, 1/14, 0, 1/14}



Graph Basics
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Definition
A path between two vertices is a sequence of vertices with the
property that each consecutive pair in the sequence is connected by
an edge.

There are many paths connecting A and E .
One of these is A,C ,D,E , another is A,B,C ,G ,H, I ,F ,E .
A,D,E is not a path connecting A and E .



Reachability

Definition
A vertex u is reachable from a vertex v if there is a path from v to
u.

Reachability

Input: A graph, G = (V ,E ), and a vertex, v ∈ V .
Goal: A list of all vertices reachable from v .

Which vertices are reachable from D?
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Reachability

Reachability

Input: A graph, G = (V ,E ), and a vertex, v ∈ V .
Goal: A list of all vertices reachable from v .

explore(G , v)

Input: A graph G and a vertex v .
Output: Vertices labeled “discovered” are vertices reachable from v .
1: discovered(v) =true.
2: for all neighbors of v , u do
3: if discovered(u) =false then
4: explore(G , u)



Reachability

Example: explore(Graph,H)
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We call the red edges “tree edges”.
We call the dotted edges “back edges”.



Graph Basics
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Definition
We say that a graph is connected if for each pair of vertices, there
is a path between them.

The above graph is not connected.



Graph Basics
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Definition
A connected component (or just component) of a graph is a subset
of vertices such that every vertex in the subset has a path to every
other vertex in the subset and the subset is not a part of some
larger subset with the property that there is a path between every
pair of vertices.

There are two components in the graph A,B,C ,D,E ,F ,G ,H, I
and J,K , L,M,N. Note that L,M,N is not a component.



Depth-First Search

What if we want to visit all connected components of a graph?

DFS(G )

Input: A graph G = (V ,E ).
Output: A forest of connected components of G .
1: for all v ∈ V do
2: discovered(v) = false
3: for all v ∈ V do
4: if discovered(v) = false then
5: explore(G , v)

Is the algorithm correct?
What is the running time?



Running Time for DFS

DFS(G )

Input: A graph G = (V ,E ).
Output: A forest of connected components of G .
1: for all v ∈ V do
2: discovered(v) =false
3: for all v ∈ V do
4: if discovered(v) =false then
5: explore(G , v)

Step 1 takes |V | time.
We call explore(G , v) |V | times (once for each vertex).
In explore, we examine all neighbors of a vertex, so we examine
each edge (twice), 2|E |.

The time complexity is 2|V |+ 2|E | = O(|V |+ |E |) = O(n +m)



Depth-First Search

Example: DFS(Graph)
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Depth-First Search - Versatile

We could label each connected component by assigning a label
each time explore is called in DFS.
We could note when we visit and leave each vertex with pre-
and post-orderings.

previsit(v)

1: pre[v ]= clock
2: clock = clock + 1

postvisit(v)

1: post[v ]= clock
2: clock = clock + 1



Depth-First Search

Consider the explore algorithm with pre- and postorderings.

explore(G , v)

Input: A graph G and a vertex v .
Output: Vertices labeled “discovered” are vertices reachable from v .
1: discovered(v) =true.
2: previsit(v)
3: for all neighbors of v , u do
4: if discovered(u) =false then
5: explore(G , u)
6: postvisit(v)



Depth-First Search

Example: explore(G ,H)

A

B

C

D
E

F

G
H I

J

K

L

M

N
A

B

C

D

E

F

G

H

I

1,18

2,17

3,14

4,5 6,13

7,12

8,11

9,10

15,16



Directed Graphs

What if we want to imply one directional relationships?
Family trees
Sewage networks
Food webs
Webpage network
Epidemiological networks...



Graph Basics
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Here (F ,C ) ∈ E but (C ,F ) /∈ E .

Definition
The indegree of a vertex, v , in a directed graph is the number of
edges directed into v .
The outdegree of a vertex, v , in a directed graph is the number of
edges directed out of v .

The indegree of I is 1. The outdegree of I is 4.



Graph Basics
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Definition
A path in a directed graph from a vertex x to a vertex y is a
sequence of vertices with the property that each consecutive pair in
the sequence is connected with an edge and all edges are directed
in the same direction (out of x).

There is a path from G to E (G ,C ,D,F ,E ). There is not a path
from H to D.



Depth-First Search in Directed Graphs

The algorithm runs with one small change to explore:

explore(G , v)

Input: A directed graph G and a vertex v .
Output: Vertices labeled “discovered” are vertices reachable from v .
1: discovered(v) =true.
2: for all outgoing neighbors of v , u do
3: if discovered(u) =false then
4: explore(G , u)



Depth-First Search in Directed Graphs

Example: explore(G ,A):
A

B

C

D

E

F

H

I

A

B

C

D

E

F

G
H I

There are four types of edges:

Tree edges

Forward edges - Lead to a nonchild descendent.

Back edges - Lead to an ancestor in the tree.

Cross edges - Lead to neither descendant or ancestor.



Graph Basics
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Definition
A cycle (in an undirected graph) is a path with at least 3 edges in
which the first and last vertices are the same, but otherwise all
vertices are distinct.

L,M,N is a cycle, so is A,C ,F , I , and many more...



Graph Basics
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Definition
A cycle in a directed graph is a (directed) path with at least 2
edges in which the first and last vertices are the same, but
otherwise all vertices are distinct.

A,B,C ,D, I is a cycle. C ,D,E ,F , I is not a cycle.

Theorem
A directed graph has a cycle if and only if its DFS tree has a back
edge.



Graph Basics
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Definition
Two vertices, x and y , are connected in a directed graph if there is
a path from x to y and y to x .

A and D are connected. L and M are not.



Graph Basics
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Definition
A directed graph, G = (V ,E ) is strongly connected if for all pairs
of vertices u, v ∈ V , u and v are connected.

Definition
The strongly connected components of a directed graph partition
the graph into strongly connected subgraphs.



Graph Basics
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Definition
A directed acyclic graph or DAG is a directed graph with no cycles.

Theorem
Every directed graph is a DAG of its strongly connected
components.

We can find such a decomposition in linear time...



Graph Basics
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Definition
The distance between two vertices is the length of the shortest path
connecting them.

The distance between A and F is 2.
By convention, the distance between H and K is ∞.



Calculating Distance

Calculating Distance in a Graph

Input: An undirected graph, G = (V ,E ), and a vertex v ∈ V .
Goal: Return the distance from v to every other vertex in G .



Breadth-First Search

BFS(G ,A)

Input: An undirected graph, G = (V ,E ), and a vertex, A.
Output: For all vertices, X , dist(X ) is set to be the distance from

A to X .
1: for all X ∈ V do
2: dist(X ) =∞
3: dist(A) = 0
4: Q = [A] (a queue containing A)
5: while Q is not empty do
6: X = dequeue(Q)
7: for all edges (X ,Y ) ∈ E do
8: if dist(Y ) =∞ then
9: enqueue(Q,Y )

10: dist(Y ) = dist(X ) + 1



Breadth-First Search
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Breadth-First Search

A

B

C

D

E

F

G
H I

J

K

L

M

N

A

B C I

0

1



Breadth-First Search
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Breadth-First Search

A

B

C

D

E

F

G
H I

J

K

L

M

N

A

B C

D

E

F G H

I

0

1

2

3



Running Time for BFS

Step 1 takes |V | time.
Each vertex gets placed in the queue exactly once. |V | time.
In Step 7, we examine all neighbors of a vertex, so we examine
each edge (twice), 2|E |.

The time complexity is 2|V |+ 2|E | = O(|V |+ |E |) = O(n +m)



Weighted Shortest Paths

We used Breadth-First search to find shortest paths in graphs
where the edges have unit length.
How can we handle the same problem in weighted graphs?

Shortest Paths in Weighted Graphs

Input: A graph, G , where each edge, e, has length, `e (a positive
integer), and a vertex, v , in G .
Goal: Find shortest paths from v to every other vertex in the
graph.

Any ideas?



Dijkstra’s Algorithm

Edsger W. Dijkstra (1930 - 2002) was a Dutch computer
scientist.
Received the Turing Award in 1972.
Shaped computer science as we know it.
Known for his algorithm for shortest paths, dining philosophers
problem, and many others.



Dijkstra’s Algorithm

Dijkstra(G , v)

Input: A graph, G , where each edge, e, has length, `e (a positive integer),
and a vertex, v , in G .

Output: For all vertices, u, reachable from v , dist(u) is set to the distance
from v to u.

1: for all u ∈ V do
2: dist(u) =∞, and prev(u) = nil

3: dist(v) = 0
4: H = makequeue(V )
5: while H 6= ∅ do

x = deletemin(H)
6: for all edges (x , y) ∈ E do
7: if dist(y) > dist(x) + `(x,y) then
8: dist(y) = dist(x) + `(x,y)
9: prev(y) = x

10: decreasekey(H, y)



Priority Queues

This data structure maintains a set of vertices with associated key
values and supports the following operations:

Insert Add a new element to the set.
Decrease-key Accomodate the decrease in key value of a
particular element.
Delete-min Return the element with the smallest key, and
remove it from the set.
Make-queue Build a priority queue out of the given elements,
with the given key values.



Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm

A B C D E F
0 6 2 ∞ ∞ ∞

A

B

C

F

D

E

6

2

3

3

1

4

2

3



Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Traveling Salesperson Problem

Definition
A Hamiltonian path is a path in a graph that visits each vertex
exactly once.
A Hamiltonian cycle is a Hamiltonian path that is a cycle.

Traveling Salesperson Problem

Input: A complete weighted graph.
Goal: Return a Hamiltonian cycle with smallest weight.

Traveling Salesperson Problem

Input: A list of cities and the distances between each pair of cities.
Goal: Return the shortest possible route that visits each city
exactly once and returns to the origin city.



Traveling Salesperson Problem

This is an NP-hard problem (will discuss this more later).
This problem was first formulated (mathematically) in 1930.

It was first stated in a handbook for traveling salesmen in
Germany in 1832.

It has a number of applications:
School bus routes in a school district.
Farm distribution.
DNA sequencing.



Traveling Salesperson Problem

Traveling Salesperson Problem

Input: A complete weighted graph.
Goal: Return a Hamiltonian cycle with smallest weight.

Example:
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Traveling Salesperson Problem

Traveling Salesperson Problem

Input: A complete weighted graph.
Goal: Return a Hamiltonian cycle with smallest weight.
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Traveling Salesperson Problem

Traveling Salesperson Problem

Input: A complete weighted graph.
Goal: Return a Hamiltonian cycle with smallest weight.

TSP - Brute Force

1: List all possible Hamiltonian cycles.
2: Calculate the weight of each cycle.
3: Choose the cycle with least weight.

This is certainly correct. But it is slow. How slow?
If there are n vertices, the number of Hamiltonian cycles is n!.



Traveling Salesperson Problem

Traveling Salesperson Problem

Input: A complete weighted graph.
Goal: Return a Hamiltonian cycle with smallest weight.

TSP - Nearest Neighbor

1: Start at an arbitrary “home” vertex.
2: At each vertex, choose the nearest unvisited neighbor. In case

of a tie, pick at random.
3: End at the home vertex.

Is this correct?



Traveling Salesperson Problem

Traveling Salesperson Problem

Input: A complete weighted graph.
Goal: Return a Hamiltonian cycle with smallest weight.

Can you think of any other algorithms?
Correct AND
Efficient

NO!
This problem is NP-hard.

There is however a very efficient approximation algorithm, using the
minimum spanning tree.

We will create this approximation algorithm at the end of the
quarter.



Proof Practice with Graphs

Theorem
Suppose G is a simple graph on n vertices. If G has n − 1 edges
and no cycles then G is connected.

Direct Proof: P ⇒ Q

Assume P
. . .
Therefore, Q.
Thus P ⇒ Q.



Proof Practice with Graphs

Theorem
Suppose G is a simple graph on n vertices. If G has n − 1 edges and no cycles
then G is connected.

Proof.

Suppose G has no cycles and n − 1 edges.

Because G has no cycles, G is a forest.

Let k be the number of components (trees) of G .

Every component is a tree and therefore has one fewer edges
than vertices.

The number of edges in G is n − k , so n − k = n − 1, k = 1.
G has exactly one component and therefore is connected.



Proof Practice with Graphs

Theorem
If T is a tree on 2 or more vertices, then T has at least one vertex
of degree 1.

Contraposition: P ⇒ Q

Assume ∼ Q
. . .
Therefore, ∼ P .
Therefore, ∼ Q ⇒∼ P Thus P ⇒ Q.



Proof Practice with Graphs

Theorem
If T is a tree on 2 or more vertices, then T has at least one vertex of degree 1.

Proof.

Suppose T has no vertices of degree 1.
Starting at any vertex, v , follow a sequence of distinct edges
until a vertex repeats.

This is possible because the degree of every vertex is at least
two, so upon arriving at a vertex for the first time it is always
possible to leave the vertex on another edge.

When a vertex repeats for the first time, we have discovered a
cycle.

Therefore T is not a tree.



Proof Practice with Graphs

Lemma
If there is a unique path between any two vertices, then G is a tree.

Contradiction: P ⇒ Q

Assume P and ∼ Q.
. . .
Therefore, something untrue such as Q AND ∼ Q or 0 = 1.
Therefore, ⇒⇐.
Thus P ⇒ Q.



Proof Practice with Graphs

Lemma
If there is a unique path between any two vertices, then G is a tree.

Proof.
Suppose that in the graph G , there is a unique path between any
two vertices. For a contradiction, suppose that G is not a tree
(suppose that G has a cycle).

Any two vertices on the cycle are connected by at least two
distinct paths.
A contradiction.



Proof Practice with Graphs

Lemma
If G is a tree, then there is a unique path between any two vertices.

Contradiction: P ⇒ Q

Assume P and ∼ Q.
. . .
Therefore, something untrue such as Q AND ∼ Q or 0 = 1.
Therefore, ⇒⇐.
Thus P ⇒ Q.



Proof Practice with Graphs

Lemma
If G is a tree, then there is a unique path between any two vertices.

Proof.
Suppose G is a tree. For a contradiction, suppose there are two
different paths from v to w : v = v1, v2, . . . , vk = w and
v = w1,w2, . . . ,w` = w .

Let i be the smallest integer such that vi 6= wi .
Let j be the smallest integer greater than or equal to i such
that wj = vm for some m, which must be at least i . (Since
wl = vk , such an m must exist.)

Then vi−1, vi , . . . , vm = wj ,wj−1, . . . ,wi−1 = vi−1 is a cycle in G .
A contradiction.



Proof Practice with Graphs

Lemma
If G is a tree, then there is a unique path between any two vertices.

Lemma
If there is a unique path between any two vertices, then G is a tree.

Therefore, we get the following theorem:

Theorem
G is a tree if and only if there is a unique path between any two
vertices.



Proof Practice with Graphs

Definition
A full binary tree is a tree where each vertex other than the leaves
has two children.

Example:

Definition
A vertex is a leaf if it has no children; otherwise, it is an internal
vertex.



Proof Practice with Graphs

Theorem
In a full binary tree, G , the number of leaves is exactly one more
than the number of internal vertices.

Induction: (∀n ∈ N), P(n) is true

1 (Base Case) Show that P(1) is true.
2 (Inductive Hypothesis) Suppose, for all natural numbers,

k , that P(k) is true(or, for strong induction, suppose
P(1), P(2),. . . ,P(k) are true).

3 (Inductive Step) Show that P(k + 1) is true.
4 (Conclusion) By steps 1 and 2 and the PMI, P(n) is true

for all N.



Proof Practice with Graphs

Theorem
In a full binary tree, G , the number of leaves is exactly one more than the
number of internal vertices.

Proof.
We will proceed by induction on the number of vertices in the tree.

Let n be the number of vertices in the tree.
For a tree with n vertices, let `(n) be the number of leaves and
let i(n) be the number of internal vertices.

We want to show that `(n) = 1+ i(n).



Proof Practice with Graphs

Theorem
In a full binary tree, G , the number of leaves is exactly one more than the
number of internal vertices.

Proof (Cont.)

Base Case: A tree with one vertex n = 1, has one leaf vertex
and no internal vertices, so `(1) = 1+ i(1).
Inductive Hypothesis: Assume the statement is true for all
trees with n ≤ k vertices.
Inductive Step: Let T be a tree with k + 1 vertices.
Let n` and nr be the number of vertices in the left and right
subtrees, respectively.
Since k + 1 = n` + nr + 1, we know that n` ≤ k and nr ≤ k

We can apply the inductive hypothesis to each of these
subtrees: `(n`) = 1+ i(n`) and `(nr ) = 1+ i(nr ).



Proof Practice with Graphs

Theorem
In a full binary tree, G , the number of leaves is exactly one more than the
number of internal vertices.

Proof (Cont.)

The number of leaves of T is the sum of the number of leaves
in each subtree: `(k + 1) = `(n`) + `(nr ).
Substituting the previous two equations in:
`(k + 1) = 2+ i(nr ) + i(n`).
The number of internal vertices of T is the sum of the number
of internal vertices of each subtree plus one (for the root of
T ): i(k + 1) = i(n`) + i(nr ) + 1.
Substituting into the previous equation:
`(k + 1) = i(k + 1) + 1.


