
AVL Trees

CPE 103 Theresa Migler-VonDollen



Running Times for Binary Search Trees

How long did it take to accomplish the following operations on
binary search trees?

find: O(height of tree) = O(n).
This is because on average the height of a binary tree is log n.
But the worst case height is n.

insert: O(n)
delete: O(n)
isEmpty: O(1)
findMin: O(n)
findMax: O(n)

What if we could make our binary search trees shorter?



AVL Trees

Definition
An AVL tree is a self-balancing binary search tree.

This type of tree was created by Georgy Adelson-Velsky and
Evgenii Landis in 1962.

Recall that the height of a vertex is the length of the longest
downward path to a leaf from that vertex. The height of the tree is
the height of the root.
In an AVL tree, the heights of the two child subtrees of any
vertex differ by at most one.

How long will the find operation take?
insert?
delete?



AVL Trees

Is the following an example of an AVL tree? Why or why not?

4

17

1 9

30

31

29

28

428

41



AVL Trees

Is the following an example of an AVL tree? Why or why not?

4

17

1 9

30

31

29

28

428

41

21



AVL Trees

Is the following an example of an AVL tree? Why or why not?

4

17

1 9

30

31

29

15

42



The Find Operation

Find is done in the exact same way as it was done in generic binary
search trees.

4

17

1 9

30

31

29

28

428

41

21



The Insert Operation

In what situations would we have to be careful when inserting a
vertex?

4

17

1 9

30

31

29

28

428

41

21

How would we insert a vertex with key 10? 45? 2? 7?



The Insert Operation - Rotations

Suppose, after an insertion, that there is a vertex, x , that is
unbalanced.

Further suppose that x is the deepest unbalanced vertex.
It must be the case that the height of x ’s subtrees must differ
by two.

There are four cases for how such an x might come to be:
1 An insertion into the left subtree of the left child of x .
2 An insertion into the right subtree of the left child of x .
3 An insertion into the left subtree of the right child of x .
4 An insertion into the right subtree of the right child of x .

Cases 1 and 4 are symmetric as can be remedied with a single
rotation.
Cases 2 and 3 are also symmetric and can be remedied with a
double rotation.



Single Rotation

Suppose we wish to insert a vertex with key 7.

4

17

1 9

30

31

29

28

428

41

21



Single Rotation

Suppose we wish to insert a vertex with key 7.

4

17

1 9

30

31

29

28

428

41

21

7



Single Rotation

Suppose we wish to insert a vertex with key 7.

4

17

1 8

30

31

29

28

427

41

219



Single Rotation

In general, if inserting into the left subtree of a left child creates an
imbalance, do the following:

y

x

A
B

C

y

x

A B C

Can you come up with a similar procedure to inserting into the
right subtree of the right child?



Single Rotation

Now let’s write the pseudocode.



Double Rotation

Suppose we wish to insert a vertex with key 25.

4

17

1 9

30

31

29

28

428

41

21

Would the single rotation defined above work?



Double Rotation

4

17

1 9

30

31

29

28

428

41

21

25



Double Rotation

4

17

1 9

30

31

29

21

428

41

25 28

Is this correct?



Double Rotation

4

17

1 9

30

31

29

25

428

41

21 28

Is this correct?



Double Rotation

In general, if inserting into the right subtree of a left child creates
an imbalance, do the following:

y

x

A

Dz

B C

y x

A D

z

B C

Note that we aren’t aware of which subtree of z is deeper, so we
picture them both to be the same depth.
Can you come up with a similar procedure to inserting into the left
subtree of the right child?



Double Rotation

Now let’s write the pseudocode.



Running Times for AVL Trees

find: O(height of tree) = O(log2 n).
insert: O(log2 n)
delete: O(log2 n)


