Binary Search Trees

- Theresa Migler-VonDollen

Binary Search Trees
L

Binary Search Trees are used to store items in memory.
They allow for fast lookup, insertion, and deletion.

They keep their keys in sorted order so that lookup and other
operations can use the principle of binary search.

Binary Search Trees

A binary search tree is a binary tree (each vertex, v, has at
most two children left, (v), and right, r(v)).
Vertices are organized by the Binary Search Property:
O Every vertex is ordered by a key.
O For every vertex, v, the key of £(v) (and keys of all vertices in
the subtree rooted at ¢(v)) is less than the key of v.
O For every vertex, v, the key of r(v) (and keys of all vertices in
the subtree rooted at r(v)) is greater than the key of v.

Binary Search Trees
-

Does the following graph represent a binary search tree?

Binary Search Trees
-

Does the following graph represent a binary search tree?

Operations on Binary Search Trees

There are three main operations:
find: search the binary search tree for a specific key.
insert: insert an element with a specific key (while maintaining
the binary search tree structure).
delete: remove an element (while maintaining the binary
search tree structure).
There are additional helpful operations:
isEmpty: check if the binary search tree is empty.
findMin: finds the element with minimum key.

findMax: finds the element with maximum key.

The isEmpty Operation
L

isEmpty(T)

Input: A binary search tree T.
Output: True if the tree is empty, False otherwise.
1. if root(T) = null then
return True
2: else
return False

The Find Operation

We can use a recursive procedure to find a vertex with a specific
key, k, in a tree, T:

Check the root, root(T), if it's key (key(root(T))) is k,
return the root.
Otherwise:

O If key(root(T)) < k: recurse on the right subtree.

O If key(root(T)) > k: recurse on the left subtree.

O There will be no additional case if we assume that all keys are
distinct.

The find Operation

S
find(T, k, v)

Input: A binary search tree T, a key, k, and the current vertex, v (initially
the root).
Output: Either a statement that there is no vertex with key k or the
vertex with key k.
1: if isEmpty(T) then
return “There is no vertex in T with key k."

2: if key(v) = k then return v
3: else if k < key(v) then
4 if v.left = null then
return “There is no vertex in T with key k."
else return find(T, k, v.left)

else
if v.right = null then
return “There is no vertex in T with key k."
8: else return find(T, k, v.right)

N g

The findMin Operation
L

findMin(T, v)
Input: A binary search tree T and the current vertex, v (initially the
root).
Output: The vertex with the smallest key.
1. if isEmpty(T) then
return “The tree is empty”
2: else if v.left = null then
return v

3: else
return findMin(T, v.left)

The findMax Operation
L

findMax(T, v)

Input: A binary search tree T and the current vertex, v (initially the
root).
Output: The vertex with the largest key.
1. if isEmpty(T) then
return “The tree is empty”
2: else if v.right = null then
return v
3: else
return findMax(T, v.right)

The insert Operation
-

How should we go about inserting a vertex with key 20 into the
following binary search tree?

The insert Operation
L

How should we go about inserting a vertex with key 11 into the
following binary search tree?

This operation expands on the find operation. We insert the new
vertex as the appropriate child of the last vertex visited.

The insert Operation

I
insert(T, v, x)

Input: A binary search tree T, the current vertex, v (initially the root),
and the vertex to be inserted, x.
Output: The binary search tree, T, including x.
1: if isEmpty(T) then
return root(T) = x
if key(v) = key(x) then
Update or discard....
else if key(v) < key(x) then
if v.right = null then
v.right = x
else return insert(T, v.right, x)
else
if v.left = null then
v.left = x
else return insert(T, v.left, x)

© X NDO RN

==
= O

The delete Operation
-

How should we go about deleting vertex 187

Vertex 107 Vertex 97

The delete Operation
L

If the vertex to be deleted is a leaf, we can immediately delete
it.

If the vertex to be deleted has only one child, the vertex can
be deleted and the child takes the place of the deleted vertex.

If the vertex to be deleted has two children, the idea is to
replace this vertex with the vertex with the smallest key in the
right subtree and recursively delete this vertex.

Try to write the pseudocode for this operation (recall that we have
the operation for findMin).

Running Time
.

What is the running time for the 6 discussed operations?
find: O(height of tree) = O(n).
O This is because on average the height of a binary tree is log n.
But the worst case height is n.

insert: O(n)
delete: O(n)
isEmpty: O(1)
findMin: O(n)
findMax: O(n)

