Priority Queues

- Theresa Migler-VonDollen

The Priority Queue Abstract Data Type
L

A priority queue is similar to a regular queue or stack data
structure, but where each element has a priority associated with it.

An element with high priority is served before an element with
low priority.

If two elements have the same priority, they are served
according to their order in the queue.

We will be using the minimum binary heap (array) implementation.

We will use the convention that the smaller the priority
number, the higher the priority.
O An element with priority 3 will be served before an element
with priority 8.

Priority Queue Operations
L

A priority queue must support the following operations:

insert (with priority): adds an element to the queue with
associated priority.

deleteMin: removes the element from the queue that has the
highest priority, and returns it.

In addition there are often the following two operations:

peek: returns the highest-priority element but does not modify
the queue.

isEmpty: returns true if the queue is empty.

Binary Heap Implementation
I

A binary heap is a binary tree with two additional properties:

"1 The structure property
O The binary tree is complete.

"1 The heap-order property

What is a complete binary tree?

Trees
.

A tree is a connected graph with no cycles.

Terminology: root, parent, child, sibling, ancestor, descendant, leaf.

Binary Trees
I

A binary tree is a tree in which each vertex has at most two
children.

Terminology: root, parent, left child, right child.

Complete Binary Trees
L

A complete binary tree is a binary tree in which every level (except
possibly the last) is completely filled.

The last level may be partially filled from left to right.

The height of a complete binary tree with n elements is |log, n|

Storing Complete Binary Trees
L

Complete binary trees can easily be stored in an array.

Notice that for an element at position x:
The left child of the element at x is at position 2x.
The right child of the element at x is at position 2x + 1
X

The parent of the element at 2 is at position |]

Binary Heap Order Property
L

For every vertex, v (except the root):
key(parent(v)) < key(v)
Thus, the minimum key is at the root.

Any operation on the heap (insert, deleteMin) must maintain the
order property.

Binary Heap Order Property

Binary Heap Insert Operation

Insert the new element into the heap at the next available leaf.

Binary Heap Insert Operation

Insert the new element into the heap at the next available leaf.

Binary Heap Insert Operation

As long as the heap order is not satisfied, “percolate” up.

Binary Heap Insert Operation

As long as the heap order is not satisfied, “percolate” up.

Binary Heap Insert Operation

As long as the heap order is not satisfied, “percolate” up.

(20)
(28) OO
DR GOICOBNOIONC

Binary Heap Insert Operation

As long as the heap order is not satisfied, “percolate” up.

(20) (7
(28) OO
DR GOICOBNOIONC

Binary Heap Insert Operation

As long as the heap order is not satisfied, “percolate” up.

Insert Pseudocode
1

Heaplnsert(H, x)

Input: A binary heap, H, and an element with value x.
Output: A new binary heap containing the element with value x.
1: Add a vertex with value x to the right of the farthest right leaf
(on the last level) in H.
2: while x < the value of x's parent do
3: Swap the values of the respective vertices.

Can we (should we?) make this more formal?

Binary Heap DeleteMin Operation

Move the last leaf element into the empty position at root.

Binary Heap DeleteMin Operation

Move the last leaf element into the empty position at root.

Binary Heap DeleteMin Operation

Move the last leaf element into the empty position at root.

Binary Heap DeleteMin Operation

As long as heap order is not satisfied, “percolate” down (choose the
min element to swap with).

Binary Heap DeleteMin Operation

As long as heap order is not satisfied, “percolate” down (choose the

min element to swap with).

Binary Heap DeleteMin Operation

As long as heap order is not satisfied, “percolate” down (choose the
min element to swap with).

Binary Heap DeleteMin Operation

As long as heap order is not satisfied, “percolate” down (choose the
min element to swap with).

DeleteMin Pseudocode
1

HeapDeleteMin(H)

Input: A binary heap, H.
Output: A new binary heap with the original minimum element re-
moved.
1: Delete the root vertex. (This creates a “hole”.)
2: Replace the hole with the farthest right leaf (on the last level)
in H, x. (The tree is again complete binary tree.)
3: while value of x > value of x's children do
Swap the values of x and the smaller of x's children.

»

Can we (should we?) make this more formal?

Heap Running Times
.

Note that the height of the heap is |log n|
insert: O(log n)
deleteMin: O(log n)

Applications for Priority Queues

Operating system scheduling.
Prim’s algorithm for minimum spanning tree.
Huffman encoding.

Bandwidth management.

