Sorting Algorithms

- Theresa Migler-VonDollen

Sorting

Sorting

Input: A list of numbers, a;, ap, a3, ... a.
Goal: Return a list of the same numbers sorted in increasing order.

Example:
Given: 4,907,34,18,42,36,71,34,16
Return: 4,16, 18,34, 34, 36,42,71,907

Selection Sort - Review from 102
1

Input: A list of numbers, a1, ap, as, ... an.
Goal: Return a list of the same numbers sorted in increasing order.

SelectionSort(A[0, ..., n—1])

Input: A list of unsorted numbers A0, ..., n— 1]
Output: The same list sorted in increasing order
1. fori=0,...,n—1do
2: Find min of A[i,...,n—1].
3: Suppose that the min occurs at position j.
4: Swap A[i] with A[j].

Selection Sort - Analysis
-

1 Is it correct?

Lemma

Upon completion of SelectionSort, for any i € {1,...,n— 1},
Ali — 1] < A[i].

=1 Running Time:
O 7(n)=T(n—1)+ O(n) = O(n?)

Bubble Sort
1

Input: A list of numbers, a1, ap, as, ... an.
Goal: Return a list of the same numbers sorted in increasing order.

BubbleSort(A[0, ..., n — 1])

Input: A list of unsorted numbers A0, ..., n— 1]
Output: The same list sorted in increasing order
1. fori=0,...,n—1do
2: for j=0,...,n—1do
3: if Alj] > A[j + 1] then
4: Swap A[j] and A[j + 1]

Bubble Sort - Analysis
L

Is it correct?

Upon completion of BubbleSort, for any i € {1,...,n— 1},
Ali — 1] < A[i].

Running Time:
O There are two for loops, each of size n.
O Step 4 is constant time.
O Therefore, the running time is O(n?).

How does BubbleSort perform on already sorted lists?

Insertion Sort
1

Input: A list of numbers, a;, ap, a3, ... a,.
Goal: Return a list of the same numbers sorted in increasing order.

InsertionSort(A[0, ..., n—1])

Input: A list of unsorted numbers A[O, ..., n— 1]
Output: The same list sorted in increasing order
1. fori=1,...,n—1do
j=i
while j > 0 and A[j — 1] > A[j] do
Swap A[j] and A[j — 1]
Jj=j-1

Insertion Sort - Analysis
-

01 s it correct?

Lemma

Upon completion of InsertionSort, for any i € {1,...,n— 1},
Ali — 1] < A[1].

=1 Running Time:
O There is one for loop of size n.
O At most the while loop will perform n swaps.
O Therefore, the running time is O(n?).

Selection Sort vs Bubble Sort vs Insertion Sort
1

The three algorithms are asymptotically equivalent.

However, in practice InsertionSort is much faster than the
others.

Which algorithms are online - can sort lists as they receive them?
SelectionSort requires the whole input at the beginning.
InsertionSort is online.

What about BubbleSort?

Divide and Conquer
L

Divide and Conquer is a strategy that solves a problem by:

Breaking the problem into subproblems that are themselves
smaller instances of the same type of problem.

Recursively solving these subproblems.

Appropriately combining their answers.

Merge Sort
L

Input: A list of numbers, ai, ap, a3, ... a,.
Goal: Return a list of the same numbers sorted in increasing order.

MergeSort(A[0, ..., n — 1])

Input: A list of unsorted numbers A0, ..., n— 1]
Output: The same list, sorted in increasing order
1: if n <1 then
return A
2: else
return Merge(MergeSort(A[0, ..., [n/2]]),MergeSort(A[|n/2 |+
1,...,n—1]))

Merge Sort
L

Input: A sequence of numbers, a;, az, as, ... a,.
Goal: Return a list of the same numbers sorted in increasing order.

Merge(x[O0, ..., k —1],y[0,..., ¢ —1])

Input: Two sorted lists, x[0,...,k — 1] and y[0,...,¢ — 1]
Output: One sorted list that contains all elements of both lists.
1. if x =0 then return y

N

if y =0 then return x
. if x[0] < y[0] then
return x[0]oMerge(x[1, ...,k —1],y[0,...,¢ —1])
4: else
return y[0]oMerge(x[0, ...,k —1],y[1,...,£—1])

w

Merge Sort - Correctness
L

Merge correctly merges two sorted lists.

We will procede by induction on the total size of the lists being
merged. (We will prove that Merge correctly merges two sorted
lists of total size n.)

Base Case: (n=1)
This will only occur if either x or y is empty, and the other list
has exactly 1 element.

O Merge correctly merges the empty list with any other sorted
list.
Inductive Hypothesis: Suppose that Merge correctly merges
two sorted lists of total size equal to n.

Merge Sort - Correctness
.

Merge correctly merges two sorted lists.

Inductive Step: Consider two sorted lists with total size n+ 1.

O In steps 3 and 4 of the algorithm, Merge correctly places the
smallest element at the beginning of the list.
O Merge then concatenates that element with the Merge of the
remaining elements of the two lists.
The total size of the remaining two lists is n.
By the Inductive Hypothesis, Merge correctly merges the
remainder.

Conclusion: Therefore, by PMI, Merge correctly merges two
sorted lists.

Merge Sort - Running Time
L

What is the running time?
O T(n)=2T(n/2)+ O(n) = O(nlogn)

Quick Sort
1

Input: A list of numbers, a1, az, a3, ... an.
Goal: Return a list of the same numbers sorted in increasing order.

QuickSort is also a divide and conquer algorithm.
Idea:
Pick a “pivot point”.
O Picking a good pivot point can greatly affect the running time.
Break the list into two lists:
O Those elements less than the pivot element.
O Those elements greater than the pivot element.
Recursively sort each of the smaller lists.

Make one big list: the 'smallers’ list, the pivot points, and the
'biggers’ list.

Quick Sort
1

Input: A list of numbers, a1, az, a3, ... an.
Goal: Return a list of the same numbers sorted in increasing order.

QuickSort(A[0, ..., n — 1], low, high)

Input: A list of unsorted numbers A[0, ..., n— 1], two integers high
and low
Output: The same list sorted in increasing order
1: if Jow < high then
2: pivotLocation =Partition(A, low, high)
3: QuickSort(A, low, pivotLocation)
4: QuickSort(A, pivotLocation + 1, high)

Quick Sort - Partition
e
Partition(A, low, high)

Input: A list of unsorted numbers A0, ..., n— 1], two integers high
and low
Output: An integer (the pivot location) and a list partitioned about
the pivot.
pivot = Allow]
leftwall = low
for i=low +1,..., high do
if Al/] < pivot then
Swap A[i] and Alleftwall]
leftwall = leftwall + 1
Swap A[low] with A[leftwall]
return leftwall

N ke

Quick Sort - Running Time
1

Average case analysis:
O(nlog n)
Worst case analysis:

0O(n?)

