

Sorting Algorithms

Sorting

Sorting

Input: A list of numbers, $a_1, a_2, a_3, \dots, a_n$.

Goal: Return a list of the same numbers sorted in increasing order.

Example:

Given: 4, 907, 34, 18, 42, 36, 71, 34, 16

Return: 4, 16, 18, 34, 34, 36, 42, 71, 907

Selection Sort - Review from 102

Sorting

Input: A list of numbers, $a_1, a_2, a_3, \dots, a_n$.

Goal: Return a list of the same numbers sorted in increasing order.

SelectionSort($A[0, \dots, n - 1]$)

Input: A list of unsorted numbers $A[0, \dots, n - 1]$

Output: The same list sorted in increasing order

1: **for** $i = 0, \dots, n - 1$ **do**

2: Find min of $A[i, \dots, n - 1]$.

3: Suppose that the min occurs at position j .

4: Swap $A[i]$ with $A[j]$.

Selection Sort - Analysis

- Is it correct?

Lemma

Upon completion of SelectionSort, for any $i \in \{1, \dots, n - 1\}$, $A[i - 1] \leq A[i]$.

- Running Time:
 - $T(n) = T(n - 1) + O(n) = O(n^2)$

Bubble Sort

Sorting

Input: A list of numbers, $a_1, a_2, a_3, \dots, a_n$.

Goal: Return a list of the same numbers sorted in increasing order.

`BubbleSort($A[0, \dots, n - 1]$)`

Input: A list of unsorted numbers $A[0, \dots, n - 1]$

Output: The same list sorted in increasing order

```
1: for  $i = 0, \dots, n - 1$  do
2:   for  $j = 0, \dots, n - 1$  do
3:     if  $A[j] > A[j + 1]$  then
4:       Swap  $A[j]$  and  $A[j + 1]$ 
```

Bubble Sort - Analysis

- Is it correct?

Lemma

Upon completion of BubbleSort, for any $i \in \{1, \dots, n - 1\}$, $A[i - 1] \leq A[i]$.

- Running Time:
 - There are two for loops, each of size n .
 - Step 4 is constant time.
 - Therefore, the running time is $O(n^2)$.

How does BubbleSort perform on already sorted lists?

Insertion Sort

Sorting

Input: A list of numbers, $a_1, a_2, a_3, \dots, a_n$.

Goal: Return a list of the same numbers sorted in increasing order.

InsertionSort($A[0, \dots, n - 1]$)

Input: A list of unsorted numbers $A[0, \dots, n - 1]$

Output: The same list sorted in increasing order

```
1: for  $i = 1, \dots, n - 1$  do
2:    $j = i$ 
3:   while  $j > 0$  and  $A[j - 1] > A[j]$  do
4:     Swap  $A[j]$  and  $A[j - 1]$ 
5:    $j = j - 1$ 
```

Insertion Sort - Analysis

- Is it correct?

Lemma

Upon completion of InsertionSort, for any $i \in \{1, \dots, n-1\}$, $A[i-1] \leq A[i]$.

- Running Time:
 - There is one for loop of size n .
 - At most the while loop will perform n swaps.
 - Therefore, the running time is $O(n^2)$.

Selection Sort vs Bubble Sort vs Insertion Sort

The three algorithms are asymptotically equivalent.

- However, in practice InsertionSort is much faster than the others.

Which algorithms are *online* - can sort lists as they receive them?

- SelectionSort requires the whole input at the beginning.
- InsertionSort is online.
- What about BubbleSort?

Divide and Conquer

Divide and Conquer is a strategy that solves a problem by:

- 1 Breaking the problem into subproblems that are themselves smaller instances of the same type of problem.
- 2 Recursively solving these subproblems.
- 3 Appropriately combining their answers.

Merge Sort

Sorting

Input: A list of numbers, $a_1, a_2, a_3, \dots, a_n$.

Goal: Return a list of the same numbers sorted in increasing order.

`MergeSort($A[0, \dots, n - 1]$)`

Input: A list of unsorted numbers $A[0, \dots, n - 1]$

Output: The same list, sorted in increasing order

1: **if** $n \leq 1$ **then**

return A

2: **else**

return `Merge(MergeSort($A[0, \dots, \lfloor n/2 \rfloor]$), MergeSort($A[\lfloor n/2 \rfloor + 1, \dots, n - 1]$)))`

Merge Sort

Sorting

Input: A sequence of numbers, $a_1, a_2, a_3, \dots, a_n$.

Goal: Return a list of the same numbers sorted in increasing order.

Merge($x[0, \dots, k - 1], y[0, \dots, \ell - 1]$)

Input: Two sorted lists, $x[0, \dots, k - 1]$ and $y[0, \dots, \ell - 1]$

Output: One sorted list that contains all elements of both lists.

- 1: **if** $x = \emptyset$ **then return** y
- 2: **if** $y = \emptyset$ **then return** x
- 3: **if** $x[0] \leq y[0]$ **then**
 return $x[0] \circ \text{Merge}(x[1, \dots, k - 1], y[0, \dots, \ell - 1])$
- 4: **else**
 return $y[0] \circ \text{Merge}(x[0, \dots, k - 1], y[1, \dots, \ell - 1])$

Merge Sort - Correctness

Theorem

Merge correctly merges two sorted lists.

Proof.

We will proceed by induction on the total size of the lists being merged. (We will prove that Merge correctly merges two sorted lists of total size n .)

- Base Case: ($n = 1$)
This will only occur if either x or y is empty, and the other list has exactly 1 element.
 - Merge correctly merges the empty list with any other sorted list.
- Inductive Hypothesis: Suppose that Merge correctly merges two sorted lists of total size equal to n .

Merge Sort - Correctness

Theorem

Merge *correctly merges two sorted lists.*

Proof (Cont.)

- Inductive Step: Consider two sorted lists with total size $n + 1$.
 - In steps 3 and 4 of the algorithm, Merge correctly places the smallest element at the beginning of the list.
 - Merge then concatenates that element with the Merge of the remaining elements of the two lists.
 - The total size of the remaining two lists is n .
 - By the Inductive Hypothesis, Merge correctly merges the remainder.
- Conclusion: Therefore, by PMI, Merge correctly merges two sorted lists.

Merge Sort - Running Time

- What is the running time?
 - $T(n) = 2T(n/2) + O(n) = O(n \log n)$

Quick Sort

Sorting

Input: A list of numbers, $a_1, a_2, a_3, \dots, a_n$.

Goal: Return a list of the same numbers sorted in increasing order.

QuickSort is also a divide and conquer algorithm.

Idea:

- Pick a “pivot point”.
 - ▣ Picking a good pivot point can greatly affect the running time.
- Break the list into two lists:
 - ▣ Those elements less than the pivot element.
 - ▣ Those elements greater than the pivot element.
- Recursively sort each of the smaller lists.
- Make one big list: the ‘smallers’ list, the pivot points, and the ‘bigger’ list.

Quick Sort

Sorting

Input: A list of numbers, $a_1, a_2, a_3, \dots, a_n$.

Goal: Return a list of the same numbers sorted in increasing order.

QuickSort($A[0, \dots, n - 1]$, low , $high$)

Input: A list of unsorted numbers $A[0, \dots, n - 1]$, two integers $high$ and low

Output: The same list sorted in increasing order

- 1: **if** $low < high$ **then**
- 2: $pivotLocation = \text{Partition}(A, low, high)$
- 3: QuickSort($A, low, pivotLocation$)
- 4: QuickSort($A, pivotLocation + 1, high$)

Quick Sort - Partition

Partition($A, low, high$)

Input: A list of unsorted numbers $A[0, \dots, n - 1]$, two integers $high$ and low

Output: An integer (the pivot location) and a list partitioned about the pivot.

```
1: pivot =  $A[low]$ 
2: leftwall =  $low$ 
3: for  $i = low + 1, \dots, high$  do
4:   if  $A[i] < pivot$  then
5:     Swap  $A[i]$  and  $A[leftwall]$ 
6:     leftwall = leftwall + 1
7: Swap  $A[low]$  with  $A[leftwall]$ 
return leftwall
```

Quick Sort - Running Time

Average case analysis:

- $O(n \log n)$

Worst case analysis:

- $O(n^2)$