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Abstract. Mathematical models of disease spreading are a key factor
in ensuring that we are prepared to deal with the next epidemic. They
allow us to predict how an infection will spread throughout a population,
thereby allowing us to make intelligent choices when attempting to con-
tain a disease. Whether due to a lack of empirical data, a lack of compu-
tational power, a lack of biological understanding, or some combination
thereof, traditional models must make sweeping, unrealistic assumptions
about the behavior of a population during an epidemic.

We present the results of granular epidemic simulations using a rich
social network constructed from real-world interactions, demonstrating
the effects of ten potential vaccination strategies. We confirm estimates
by the WHO and the CDC regarding the virulence of measles-like dis-
eases, and we show how representing a population as a temporal graph
and applying existing graph metrics can lead to more effective interven-
tions.
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1 Introduction

Epidemiology is the study of diseases that infect people, including the biological
and social mechanisms involved in their outbreak, transmission, containment,
and, hopefully, eventual eradication. Of that last goal, to date, only one disease
that affects humans has been eradicated: a naturally occurring case of small-
pox has not been reported since October of 1977, the conclusion of almost two
hundred years of work immunizing the general population [5]. This required
a dedicated program on the part of the World Health Organization, involving
mass vaccinations, health surveillance, and targeted interventions on continental
scales over more than a decade.

Should we ever be confronted with another smallpox-esque disease, computer
models will be crucial to effective coordination and utilization of our limited
resources, a logistical problem for which, in many respects, we are not currently
prepared [7]. Developing models to simulate and predict the spread of diseases
could allow us to contain outbreaks before they become epidemics, and, failing
that, to determine the appropriate methods of intervention.
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However, because of the complexity of the involved sociological and biolog-
ical mechanisms, traditional mathematical models must make a handful of key
unrealistic assumptions. In particular, they cannot account for the transmission
of disease on an individual, per-person scale. Conventional full mixing models
assume that every individual has an equal chance of coming into contact with any
other member of the population: an assumption that is almost always incorrect.

We represent a real-world population as a temporal graph, capturing contact
events with greater precision. We use this graph to investigate the possibility
that existing graph metrics can inform more effective interventions.

2 Related Works

Kephart and White were, in 1991, among the first to propose modeling the
spread of a virus using a graph [10]. Modeling networked computers as vertices
in a directed graph, they apply a Susceptible - Infectious - Susceptible (SIS)
model, assuming that every computer either is infected and capable of spreading
the infection or is susceptible to being infected. Each edge represents a network
connection, and they assign to each edge a probability of transmitting the virus.

The incorporation of individual movements, such as we might find in high res-
olution social networks, is not exclusive to models based on graphs. Granell and
Mucha partition a population based on individuals’ locations at discrete time
steps, differentiating between residences and common spaces and between day-
time and nighttime behavior, in order to account for patterns of movement [9].
Similarly, Gemmetto, Barrat, and Cattuto use temporal information to refine
a conventional epidemic simulation, deriving their data from a real-world high
resolution contact network obtained from sensors worn by children at a primary
school in Lyon, France, which allows them to simulate the effects of varying
degrees of school closure [8].

Fŕıas-Mart́ınez, Williamson, and Fŕıas-Mart́ınez construct and infect a
dynamic social network of an entire city in Mexico [6]. Their location data is
collected from cell towers, which they use to analyze the efficacy of the Mexican
government’s response to the 2009 H1N1 swine flu pandemic. Stopcyznski, Pent-
land, and Lehmann infected their Copenhagen network, using an SIR simulation
to emphasize the structural differences between short- and long-range contact
networks [13].

3 The Network

We develop our simulations using a network based on the Copenhagen Network
Study. This study was conducted in two distinct iterations between 2012 and
2013, with the aim of creating a “high resolution” social network that was not
owned by a private company or a government and could therefore be provided
to researchers [14]. Not all of the data that was collected is relevant to disease
spreading. We focus on face-to-face contact data, recorded based on phone-to-
phone Bluetooth scans. This data encompasses the interactions of about seven
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hundred individuals, over one month, reported every five minutes. The detail of
this contact data gives us the opportunity to simulate transmission of disease
with far more granularity, precision, and realism than would be possible in a full
mixing model.

We highlight the number of interactions over time in the Copenhagen dataset
(plotted in the Appendix, Fig. 5). We find that individuals’ interactions also
occur with a distinctive and immediately recognizable pattern: every day, the
most interactions occur around midday, and there are significantly more on what
we infer to be weekdays compared to weekends. These characteristics of the
Copenhagen dataset reinforce the idea that full mixing simulations will not suf-
fice: it is not a realistic assumption that every individual makes uniform, con-
stant, random contact with every other.

4 Graph Representation

We model the Copenhagen dataset as undirected graphs, snapshots of a network
over time. In each graph Gi = (Vi, Ei), vertices represent individuals; there is
an edge between vertex u and vertex v if individual u came into contact with
individual v, or vice versa, at time ti. We always assume that if u has come face-
to-face with v, then v must have come face-to-face with u. We further observe
that not every individual is present in every timestamp. For the purposes of our
simulation, we add vertices to the network once their corresponding individuals
appear, but we never remove them—since we are interested in simulating the
spread of a disease, we need to keep track of individuals’ states with respect to
the infection at all times, regardless of whether or not they appear in the raw
dataset at those times.

It is important to note that the vertices and their edges need not exclusively
form little cliques within the network: if a comes into contact with b, and b comes
into contact with c, that does not necessarily imply that a must have come into
contact with c. This could mean that, within the five minute interval represented
by each snapshot, b came into contact with a and c separately. It could also mean
that the three individuals formed a line when they came into contact with each
other, such that b came into contact with both a and c, but a and c were not
close enough to be judged as having made face-to-face contact.

5 Simulation Model

As a basis for our simulated interventions, we infect the Copenhagen net-
work with a measles-like disease using a Susceptible-Exposed-Infected-Recovered
(SEIR) model: every individual begins in a Susceptible state, transitions first into
an Exposed state once they have contracted the disease, then into an Infected
state where they may transmit the disease, and eventually permanently move to
a Recovered state.

Measles is highly contagious: nine out of ten susceptible individuals who come
into contact with an infectious individual will contract the disease [4], which can
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Table 1. Summary of ten simulated interventions

Strategy Probability of intervention Number of interventions Requisite foreknowledge

Uniform vaccination p ∈ {0.05, 0.10, . . . , 0.95} ≈p × 692 None

Vaccination by degree 1 λ ∈ {10, 20, 30, . . . , 690} One month

1 λ ∈ {10, 20, 30, . . . , 650} One week

1 λ ∈ {10, 20, 30, . . . , 610} One Monday

Vaccination by cores 1 λ ∈ {10, 20, 30, . . . , 690} One month

1 λ ∈ {10, 20, 30, . . . , 650} One week

1 λ ∈ {10, 20, 30, . . . , 610} One Monday

Vaccination by rings 1 λ ∈ {10, 20, 30, . . . , 690} One month

1 λ ∈ {10, 20, 30, . . . , 650} One week

1 λ ∈ {10, 20, 30, . . . , 610} One Monday

continue to spread effectively even when less than 90% of the population is at
risk [11].

We chose to test interventions using a measles-like disease for three reasons:
firstly, because measles is so highly contagious, interventions should have a more
pronounced effect in a shorter amount of time—if an individual escapes infection,
that is more likely to be a result of the intervention than a result of random
transmission chance. Secondly, while the measles virus is highly contagious, the
measles vaccine is equally highly effective. Properly administered in two doses,
the vaccine is 97% effective [3], so we may essentially ignore the possibility of
ineffective vaccinations. Finally, at the time of this writing, measles outbreaks in
the United States have recently risen drastically [2], so interventions that target
measles are of greater immediate relevance.

One factor that makes measles so contagious is its ability to linger in airborne
droplets for hours [11]. It is possible for a susceptible individual to contract the
disease without ever coming into contact with an infected individual, simply by
their occupying the same room within a few hours of each other. Because of
the distinct lack of location data in the our dataset, we chose not to simulate
this vector. Additionally, because the Copenhagen Study does not include inter-
actions with the outside world, we do not simulate any chance of infection via
such external contacts. We also note that contact events can only be recorded
by active phones, and not every individual will realistically be holding a pow-
ered phone at all times. These factors all mean that our simulations will be
conservative estimates of diseases’ virulence.

6 Vaccination Strategies

Our baseline intervention is vaccination with uniform probability. Whenever an
individual first appears in the Copenhagen dataset—whenever a new vertex is
added to the network—that individual has a some probability p of gaining com-
plete immunity to the disease. We simulated varying amounts of vaccination,
from p = 0.05 to p = 0.95 in increments of 0.05.
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We now imagine a scenario where there are a limited number of vaccines for
our hypothetical, measles-like disease. Perhaps the vaccine is costly to manu-
facture, difficult to administer, or experimental in nature. In these situations,
rather than randomly selecting individuals to vaccinate, we would like to vacci-
nate those that have the greatest effect on the spread of the infection.

Once an individual is vaccinated, they can neither contract nor spread the
disease. Because the disease is spread along edges of the network, vaccinating an
individual is analogous to removing all of their corresponding vertex’s incident
edges. If we are to contain an infection by removing a limited number of vertices,
and the infection spreads along edges, then our ultimate goal is to remove vertices
in order to disconnect the network into multiple connected components. If the
network is so split, then any infection that begins in one component will not
be able to spread to the others. Given this goal, if we have a limited number of
vaccinations, one possible approach is to vaccinate those individuals who make
the most contact with others.

Supposing that higher degree vertices would contribute to a faster or wider
spread of the infection were they to be infected, and supposing that those vertices
are responsible for connecting more components together, we simulated the vac-
cination of limited numbers of individuals, prioritizing those of highest degree.
Because the network consists of multiple snapshots, one option is to flatten the
entire month’s worth of data into a single graph prior to computing the degree
distribution. We can think of this as providing those in charge of administering
vaccinations with advance knowledge of every individual’s movements for the
next month. While this would give us the most information about the degrees
of vertices, it is somewhat unrealistic. Therefore, we tested two additional vari-
ations on this vaccination strategy: first, using the network flattened over the
first week of the study, second, over just the first Monday.

With the same reasoning that motivated vaccination by degree, we next
investigated vaccination informed by k-cores, induced subgraphs within which
every vertex has degree at least k [12]. Vertices belonging to higher k-cores
roughly correspond to vertices in denser regions of the network, thus, we consider
the possibility that these individuals have a greater effect on the spread of an
infection. As with the degree distribution, we first considered three methods
of flattening the network: flattening the entire month’s snapshots, flattening
the first week, and flattening the first Monday. For each flattened graph, we
computed every k-core. Given each set of k-cores, we then simulated limited
numbers of vaccinations, and vaccinations were given to the individuals that
appeared in the highest cores.

Similar to k-cores, the density decomposition partitions the vertices of a graph
based on the density of their subgraphs, producing rings of vertices [1]. Specifi-
cally, an egalitarian orientation involves the addition of direction to edges such
that vertices’ indegrees are as balanced as possible. If k is the maximum indegree
in such an orientation, then the ring Rk contains all vertices of indegree k along
with their predecessors. Compared to the highest core, the highest ring better
approximates the densest subgraph.
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Fig. 1. Numbers of affected individuals by time in uniform vaccination scenarios. Each
line is the median of ten averages of five simulations each (ten infection seeds, five
simulations per seed).

As we did with k-cores, we suppose that the vertices in the highest rings
represent individuals who are best positioned to propagate the infection. The
density decomposition was computed for the network flattened over the first
Monday, over the first week, and over the entire month. For each decomposition,
we simulated vaccinating limited numbers of individuals from the highest rings.

In all cases of targeted vaccination, we simulated varying numbers of vacci-
nations, λ, in increments of 10. A summary of simulated interventions is given
in Table 1.

7 Results

In all simulations, one individual was randomly chosen from the first snapshot
to be the initially infected “seed” of the outbreak. As has been done in similar
simulations, in order to allow ample time for infections to run their courses, the
dataset was looped twice, creating eight weeks of individual contact events [8].

We refer to an affected individual as one that has contracted the disease
at some point: one who is or has been in the Exposed or Infected states. For
reference, the results of simulations with no interventions at all are given in the
Appendix, Fig. 6. There, each curve plots the affected individuals over time in
five simulations based on the same starting situation. Once randomly chosen, the
seed of the infection was held constant, but the individual transmission events
were not. This was repeated for thirty different random seeds.

The uniform vaccination strategy is summarized by Fig. 1, which plots
the number of affected individuals for each simulated vaccination probability.
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Fig. 2. Numbers of affected individuals for varying numbers of vaccinations by degree.
Each curve is the median of five differently seeded simulations. Clockwise from top left:
degrees computed from one Monday, from one week, and from one month.

Though dramatically subdued compared to the baseline curves in Fig. 6, these
curves exhibit periods of faster-than-linear growth, and they flatten out as they
approach the maximum number of susceptible individuals, indicating that almost
every susceptible individual has been infected. We conclude that increasing the
uniform probability of vaccination neither alters nor delays the general pattern
of the outbreak; it merely places a cap on the number of individuals that can
eventually be infected.

These results agree with existing estimates that measles outbreaks can con-
tinue to occur even when <10% of the population is susceptible [11]. We further
infer that, due in part to the densely connected nature of the Copenhagen net-
work, the herd immunity threshold, the percentage of individuals that must be
immunized in order to prevent an outbreak, appears to be higher than 95%
in our simulations. This confirms and strengthens existing estimates, including
those by the WHO and the CDC, which place the threshold between 89% and
95% [4,11,15].
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Fig. 3. Numbers of affected individuals for varying numbers of vaccinations by k-core.
Each curve is the median of five differently seeded simulations. Clockwise from top left:
k-cores computed from one Monday, from one week, and from one month.

Our first targeted intervention prioritizes individuals by the degrees of their
vertices: in other words, those who made more unique contacts would receive
the vaccine first. The results of this intervention are given by Fig. 2, where the
simulations in the top-left plot compute the degree based on the first Monday; in
the top-right, based on the first week; in the center, based on the entire month.

We observe that vaccination by degree using just the first Monday’s data
does not appear to make a difference compared to the uniform vaccination of
Fig. 1. This makes intuitive sense: drawing from just the first Monday, there
is simply not enough data about the contact patterns of vertices to make an
intelligent decision regarding whom to vaccinate. Once we consider the data
from the first week, we start to see some improvement at higher numbers of
vaccinations. Starting at about λ = 500 vaccinations by highest degree, the
outbreak has been delayed until the beginning of the fourth week. Should we be
so fortunate as to have a month’s worth of data, and we vaccinate according to
highest degree, we find that, around λ = 540, the disease no longer infects the
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Fig. 4. Numbers of affected individuals for varying numbers of vaccinations by ring.
Each curve is the median of five differently seeded simulations. Clockwise from top left:
rings computed from one Monday, from one week, and from one month.

majority of susceptible individuals (540 vaccinated, thus, 152 susceptible, and a
median of only 28 infected) over a two month period.

Our second targeted vaccination strategy involves k-cores. As with vaccina-
tion by degree, we simulated administering a limited number of vaccinations,
prioritizing individuals whose vertices were in higher cores, and we computed
those cores based on the first Monday, the first week, and the entire month.
These results are shown in Fig. 3.

Disappointingly, we find that vaccination by k-core does not appear to per-
form any better than uniform random vaccination. In retrospect, however, this
makes sense: higher k-cores identify subgraphs that are clique-like, whereas
higher degrees identify the centers of subgraphs that are star-like. In a social
network, we find it believable that there are more large stars than there are
large cliques.

Finally, we simulate the vaccination of individuals whose vertices appear in
higher rings of the density decomposition. These simulations are plotted in Fig. 4,
and they show that vaccination by ring has better effects than vaccination by
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k-core and similar effects to vaccination by degree. However, we note that
whereas the degree distribution of a graph can be found in linear time, com-
puting the density decomposition has runtime quadratic with the number of
edges [1].

8 Conclusion

We have simulated disease spreading on a high resolution social network, using
a real-world dataset that captures individual human interactions with extremely
fine granularity. Using these simulations, we implemented ten strategies for
preventing an epidemic. We first confirmed existing estimates with respect to
measles-like diseases, with our results further suggesting that there exist non-
trivial, not uncommon situations where those predictions are underestimates. We
then showed that, by representing the network as a graph, we could apply exist-
ing graph metrics to inform more intelligent interventions. Notably, we showed
that vaccination based on the degree distribution or the density decomposition
of the network could delay or prevent a measles-like outbreak using fewer vacci-
nations than one based on a random distribution or the k-core decomposition.

Appendix

Fig. 5. Number of interactions by time in the Copenhagen dataset.
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Fig. 6. Numbers of affected individuals by time in measles simulations without any
interventions. Each curve is an average of five simulations with the same infection
seed; the pointwise median of thirty curves is shown in black.
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