
Introducing Computing to a Cohort of Incarcerated Youth
Kirsten Mork, Theresa Migler, Zoë Wood

California Polytechnic State University
San Luis Obispo, CA

klmork,tmigler,zwood@calpoly.edu

ABSTRACT
Computer Science and programming are changing the world, but
not everyone has equal access to education about this field. In
California, Juvenile hall students typically lack opportunities to
learn computer programming. In this paper, we present an expe-
rience report about the course we created to address the needs of
this population. Specifically, we created and taught an introductory
computing course focused on engagement. This project-based game
design curriculum was launched to a small cohort of the juvenile
hall in spring 2019. This course focused on engaging students while
introducing computing programming concepts such as variables,
logic and function. Student surveys and reports from their teacher
showed this class had a positive impact and was well received by
students and staff. We hypothesize and show initial positive indica-
tion that creative, game-oriented curriculum had a positive impact
on the demographic. We also present some of the challenges en-
countered when working within the juvenile hall system and our
solutions and general recommendations for these types of classes.

CCS CONCEPTS
• Social and professional topics→ Informal education; K-12
education.

KEYWORDS
accessibility; gender and diversity; K-12 instruction; outreach; K-12
curriculum; incarcerated youth

ACM Reference Format:
Kirsten Mork, Theresa Migler, Zoë Wood. 2020. Introducing Computing to
a Cohort of Incarcerated Youth. In The 51st ACM Technical Symposium on
Computer Science Education (SIGCSE ’20), March 11–14, 2020, Portland, OR,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.
3366820

1 INTRODUCTION
There is a need for greater diversity and acceptance in the tech
industry [3, 4] and providing access to CS education to a wide
audience is an important part of the solution to promoting diversity
in tech. Creating access to computing education requires broad
initiatives at all levels of education. Even before college, stereotypes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366820

are embedded in K-12 students, limiting who will pursue a CS
degree [5, 9, 10, 13]. In addition, only certain students in K-12 have
access to CS curricula [6]. For example, in 2017 in California, only
3% of the state’s 1.9 million high school students enrolled in a
computer science course, with low income schools being four times
less likely to offer AP computer science courses [2]. To achieve
equity, there must be equal access to CS courses and students must
be taught material tailored for all sorts of backgrounds, learning
styles, and learning needs [11, 15].

This paper presents our experience designing and launching an
introductory computer science course for the under-served pop-
ulation of incarcerated youth at a California Juvenile Hall. Given
that the incarcerated youth population has very limited access to
computer science education and that this education has benefits for
all students, we believe it is important to introduce and study the
effectiveness of this computing curriculum. We present information
about our curriculum and initial evaluation of the course for this
population. In particular, we wanted to validate whether the cre-
ativity of a project-based game design computer science curriculum
was engaging and empowering for these students.

Research shows that young adults often believe the negative
stereotypes associated with CS, such as CS being boring, only for
the ‘smart’ students, antisocial, lacking creativity, and tedious [23].
A large part in creating equity is to break stereotypes before college;
therefore, it is important to create more engaging experiences for all
students. To effectively create curriculum for Juvenile Hall students,
we relied on prior work teaching CS to elementary and high school
students [7, 21], constructing engaging CS0 courses [16, 20], and
creating accessible courses for non-majors [8]. In the end, we found
our introductory course to be a positive experience for the students
and staff. The students reported liking the class and expressed an
interest in continuing to learn computer programming. They also
reported liking the game design aspect of the course and indicated
they wished the course was longer.

2 SETTING
We partnered with an organization that educates the community
on and practices restorative justice. One of the ways they provide
restorative justice is through offering a wide variety of classes by
bringing in individuals with a broad range of skills to teach at the
local Juvenile Hall and Jail.

The work described in this paper builds on prior work with them
which focused on teaching Python to incarcerated adults in the
area [14]. In order to teach in these environments, the curriculum
must meet certain guidelines. For example, the student computers
can not have access to WiFi during the class and computers are
only available to the students during the class. All practice and
homework assignments must be done by hand, allowing learning

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

234

https://doi.org/10.1145/3328778.3366820
https://doi.org/10.1145/3328778.3366820
https://doi.org/10.1145/3328778.3366820

to continue outside the classroom, but still meeting the specific
needs of the situation.

As this prior course was designed for adults, for this project we
developed curriculum specifically for the younger audience, found
in Juvenile Hall, but with similar constrains and goals as the prior
work.

Demographics: Within Juvenile Hall, there were multiple subsets
of students. We chose to work in a setting that supported longer
incarceration (6-12 months) for middle or high school students
where the students would be there long enough to teach recurring
classes to. These students are “moderate to high risk and in need of
residential treatment". Therefore, a curricular focus was on mak-
ing sure the class was empowering and fun. The curriculum was
designed to challenge, but include immediate encouragement and
reward as well.

However, there were also many volatile variables for the class
including the size of the class, the exact grade of the students and
the uncertainty of when students would join or leave, thus, we
incorporated flexibility into the curriculum to allow for adaptation
to the needs and interests of the students as they arose; we also
always had extra activities planned in case we needed to change
course. Finally, we had well documented base code, worksheets,
and activities prepared for students who joined late in the course.
The curriculum assumes that students have basic typing skills, but
could be adapted as needed.

3 THE CURRICULUM
Research has found that project-based learning is engaging for
non-majors and can increase self-efficacy [8, 12]. In addition, there
is a need for both breadth and depth in an introductory CS cur-
riculum [16, 18]. Finally, research shows the benefits of proximal
subgoals and immediate rewards, as proximal subgoals (close, at-
tainable subgoals) over distal goals (larger, further away goals)
caused intrinsic interest and personal efficacy [1]. We attempted to
incorporate these findings through a 2D game design course.

Research on teaching high school students shows many young
adults have stereotypes that CS is anti-social and boring; we utilized
the researchers’ suggestions for correcting those misconceptions
by using game elements, fun projects, real-world applications, and
creativity [23].

3.1 Curricular Design
Overall, the curriculum was built around creating a simple 2D game.
This way, the students would have a project to work on which they
could hopefully be proud of and feel ownership of, as recommended
by researchers mentioned above. Throughout the five weeks, each
class consisted of a 10-20 minute lesson to teach a new coding
concept and then an assignment or two to practice the new concept.
Each assignment would directly add to the students’ games. This
way, they would practice the lessons of that day while still working
towards an immediate subgoal for their own project.

We chose to use Processing, a Java-based language for 2D graph-
ics. Other researchers have found success in using Processing for
introductory courses due to its simplicity and immediate visual
feedback [7, 19–22]. In addition, it is a text-based language, which

avoids some transitional issues some students experience later on
when learning in a block-based language [17].

One goal, based on researchmentioned above, was to incorporate
creativity and game design into our curriculum. The students were
allowed to design their game hero given the constraints of the
commands they knew and design or choose all of the elements in
their game. In addition, although we had instructions and outlines
for their game, as much as possible we tried to accommodate the
student requests to customize different elements of play.

Course Goal: Overall, the goal of this curriculum is to give op-
portunity to provide an introduction to computer science to an
under-served population, specifically that of juvenile hall students.
As an introductory course and an independent elective for high
school students, the goal of our curriculum is retention and inclu-
sion over technical depth.

Structure: Coding is a difficult skill to learn, and often requires
multiple facets to practice. While typical CS0 classes might have
lectures, lab assignments, homework, and projects, this class was
limited to two one-hour periods each week for five weeks. In two
hours a week, we needed to provide all of the lectures and assign-
ments, projects, and work periods. The students were not able to
work on the course material outside of the hour blocks, partly due to
their schedules and partly because we provided the laptops used by
the students each week. Bringing in laptops that could not connect
to the internet made the process much smoother in the Juvenile
Hall environment. Also, when originally planning the course we
did not know if there would be other computers available to the stu-
dents. Without being able to assign homework, it was essential to
have every assignment work towards the overall game the students
were making. We hypothesize this was more engaging, working
towards a goal instead of doing isolated practice problems; it was
necessary to make time for all of the lectures, labs, and project work
in an hour period. We discuss some techniques used to manage the
timing constraints below.

3.2 Lessons
Overall, there were ten classes over the course of five weeks. The
course outline is included below.

Lesson 1 - Introduction to Computer Science: This lesson intro-
duced students to the goals of the class as a 2D game design course
and how it fit into the context of CS as a whole. It also examined
the various fields of computer science as well as a very high-level
overview of software versus hardware, code, programming, and
programming languages. Specific to the goals of this class we dis-
cussed 2D space, and interactively graphed points in a ‘normal’
grid versus screen-space. Students were asked to come up to the
board to plot points in the two different spaces. Finally, we outlined
the 2D game they would make, a simple game where a hero slides
across the screen to collect falling objects. Assignment 1: Students
were asked to design the main hero for their game, with constraints
on number and type of shapes. The students were given a grid to
draw on and to label their shapes.

Lesson 2 - Processing Commands to Draw Hero Following the
design of the hero on paper, this class focused on the Processing
commands to enable the students to program the drawing of the

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

235

hero using code. The presentation included screen size, rgb col-
ors and shape commands, relating each of these to painting and
visual art creation. Even this simple introductory topic allows for a
demonstration and discussion about command ordering. For exam-
ple, you must pick a color before painting, and in programming the
developer must write the color command before the draw shape
commands. Similarly, for layering shapes to create a compound
hero from basic shapes, the order the shape commands are issued
effects the drawing order. Students were given a reference work-
sheet with commonly used commands to assist them while they
coded since their laptops did not connect to the internet.Assignment
2: Students were asked to write code to draw their individually
designed hero. A student example can be seen in Figure 1.

Figure 1: Example of Student Work: Drawing a Hero in Pro-
cessing.

Lesson 3 - Functions: This lesson focused on functions, explaining
the built in setup and draw functions, necessary for 2D animation
with Processing, as well as individually created functions written
for other purposes. Prep Work: To help move the class along in
total, all but the last few commands of the ‘hero’ code the students
began in lesson two were completed by the instructor prior to
class. In addition, base code was provided to enable 2D animation
(a setup function and a draw function, where the ‘hero’ code was
placed). By helping prepare this individual base code for students,
we were able to efficiently introduce functions at the beginning of
lesson three, as well as to start teaching the students how to read
code that was not written by them. In addition, we also wrote a
separate example program with three different functions to draw
three different background scenes. Assignment 3: Students finished
their heroes, becoming familiar with the new code organization and
reminding themselves of the Processing commands. Next, students
were instructed to apply what they learned about functions to
call the associated function to draw the background they desired
in their game. This allowed students to practice using functions,
reading code, and integrating preexisting code into their program,
meanwhile saving them time and still allowing them some creative
choice.

Lesson 4 - Continuing Functions and Introduction to Variables In
this lesson, we reviewed functions and students were taught coding
concepts to allow them to move their hero to the bottom of the

screen. Students were introduced to the topic of variables with
a white-board lesson. This was followed by a demonstration in
Processing, which shows how a variable representing position can
be changed to make shapes move across the screen. Assignment 4:
Students were asked tomove their hero code from the draw function
to a new hero function. They also were asked to translate the hero
to the bottom left of the screen. In addition, students designed the
falling objects for their games. These objects would ultimately be
collected by their heroes in a later lesson.

Lesson 5 - Continuing Variables This lesson began with a white-
board introduction to variable scope. Parameters, local variables,
and global variables were all discussed along with the difference
between integers and floats. Assignment 5: The students were asked
to use their knowledge about variables to enable the position of
their hero to change, resulting in it moving across the bottom of
the screen.

Lesson 6 - Conditionals and Booleans: This lesson introduced
conditionals and booleans and their use in Processing. Assignment
6: The students were asked to use conditionals to make their hero
stop moving when they reached the right side of the screen. Next,
they used booleans to make the hero move back and forth along
the bottom of the screen.

Lesson 7 - IO Key Controls and More Fun with Variables Students
were introduced to input and output especially related to key board
and mouse interactions typically used in 2D games. Prep Work:
Again to help move the class along, the instructor wrote the code
for the students’ ‘falling objects’ based on the designs they made
in lesson four. In addition partial base code for recognizing key
presses was provided. Assignment 7: The students were instructed
to complete the code associated with key presses to allow them to
control their hero’s movement. They also were given an assignment
to review variables, since the topic was still confusing for some of
them. They practiced by creating different position variables for
each instance of a falling object. Next, they used these variables to
draw and animate as many falling objects as they wanted on their
screen at a time.

Lesson 8 - Game Play Class Overview: In contrast to the original
game structure with the hero collecting falling objects, some stu-
dents indicated interest in creating a dodging game instead, where
the hero had to avoid falling objects and would lose if they were
hit by one. To accommodate the student requests, we made lesson
eight an outline of game play options. We gave an overview on
how to make a game-over screen when an object hit the ground.
We also gave an overview on how to make the falling objects cycle
back to the top of the screen when they hit the ground. Assignment
8: Students were given individual assignments based on the game
variants they chose. This assignment required the use of booleans,
basic draw functions, and using conditionals to check when objects
reached the edge of the screen. These were all topics students had
previously learned.

Lesson 9 - Collision Detection: Class Overview: The lesson focused
on how to represent collisions in a game using bounding box approx-
imations. This was demonstrated with pseudo-code and drawings
on the whiteboard. Assignment 9: Students began implementing
collision detection.

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

236

Lesson 10 - Final Touches Class Overview: This lesson was de-
signed for students to focus on the fun, final touches of game cre-
ation. Students were given a free work period. They were also given
the option to demo their game to the class. Prep Work: Again due to
time constraints, individual assistance was provided to complete the
collision detection from the prior lesson. Assignment 10: Students
added final edits to their games.

3.3 Challenges and Considerations
This educational experience for students had a strict time limit due
to students not being able to access the computer lab outside of
class time. To balance learning new concepts and game develop-
ment, we needed to be aggressive about time management. One
way we supported students with the class time constraints was
by having two other teaching assistants (Cal Poly students) attend
each lesson to assist, providing a one-to-two ratio of TAs to stu-
dents during most of the course. We found the class would have
been very difficult without TAs being able to provide individual
help. While the students stayed engaged during the lecture and
learned overall concepts during that time, 10-20 minutes limited the
amount of technical learning. Therefore, the tutoring-style work
period allowed students to get the individual help needed to make
progress on their projects and aided in reiterating the lessons.

Another way we accommodated for the time constraint was
providing scaffolding for different parts of the project. In addition,
while each student designed their project and coded the first part
of each assignment every class, one hour was never long enough
to learn and then finish an assignment on a new topic. With the
students’ permission, as noted above some prep work included
us finishing the remainder of some of the class assignments and
adding new base code to prepare for the next lesson. This allowed
students to be ready to move on to the next lesson. The decision
to provide individualized assistance to move along through the
curriculum this way emerged after the first few classes and after
talking with the students’ regular teacher. He explained it would
be most encouraging for the students if, once they started learning
a new concept, they were not bogged down by tedious tasks when
time was so limited. From his experience working with this student
population, he emphasized that holding their engagement was of
utmost importance. We admit this is a limitation to student learning
as tedious work can be an important part of learning; however, we
feel this was the correct solution when balancing engagement and
learning (as shown by student responses to post-survey questions).

Implementing this course required some specific and important
details that we share here for those considering implementing a
similar program.We needed a good deal of lead time prior to starting
the class due to the sensitive nature of the population. Volunteers
needed to be cleared to enter Juvenile Hall and trained on rules
and regulations. Another setup requirement was determining how
to make this course count for the students’ high school credits, as
each student had different course requirements remaining. Some
students were able to count this course as a general elective credit;
however others needed it to be a math elective or art course instead.
The range of course needs of these students supports the idea of
incorporatingmultiple subjects while teaching CS curriculum. Since
our course was a combination of 2D game design and computer

science, it was heavy in math, coding, and art/design; this enabled
it to count for diverse course needs.

4 VALIDATION
To assess the impact of this experience for students, surveys were
given both before and after the class to gather student efficacy
and opinions. The surveys were anonymous and were given in the
form of printed out Google form surveys (for the pre-survey) and
questions on the white board (for the post-survey). This research
received IRB approval with care given to working with incarcerated
youth.

The number of students in the course varied over the course
offering due to the nature of Juvenile Hall and students varying
attendance there. Overall, seven different students participated in
the course. The sample size for this result is too small for these
findings to be statistically significant, however, we found their
responses informative, especially when considering our future plans
for the next iteration of this course.

4.1 Quantitative Results
The following were the main questions our surveys addressed:

Research Question 1: Is our proposed intervention, specifically
using game design, an effective and engaging way to introduce the
target demographic to CS?

Our hypothesis when designing this curriculum was that game
design would be the most engaging way to teach this group. How-
ever, our pre-survey results showed that students had the exact
same interest in learning to program as they did in learning to
make games. This implies that other areas may have been equally
interesting to these students.

However, although pre-surveys indicate games are no more en-
ticing than computer programming in general, post-surveys show
that most students would recommend a game focus over computa-
tional art for future iterations of this class. Four of the six students
present for the post-survey suggested game design, and the other
two reported no preference. (Computational art was shown to be
an engaging context for a different high school population [21],
thus it was under consideration for future iterations).

When students were asked to rank on a Likert scale, with 1
meaning ‘disagree’ and 7 ‘fully agree’, how much they liked the
class, the average response was 7. We note, however, that the survey
was hand-written, thus although the average score was 7, not all
students responded with 7. One student reported a 6 while another
student reported liking the class 8 out of 7.

Research Question 2: What preconceived opinions do students
in this demographic have concerning CS, games, coding, and cre-
ativity?

In the pre-survey, students reported on whether they would con-
sider a career in computer science and if they thought they would
be able to get a job in computer science one day if they wanted to. A
seven-point Likert scale was used for students’ responses (1 being
‘disagree’ and 7 being ‘fully agree’). Students mostly had neutral or
positive responses to these statements. Specifically for considering
a career in CS, all responses were >= 3, with an average of 4.75.
For the question about being able to get a CS job, all responses
were >= 2, with an average of 4.5. While we only have data for 4

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

237

students for the pre-survey, more students joined the class after the
first day.

Students showed a more positive outlook when asked if they
would like to learn computer programming and if they would like
to learn how to make games on the computer, with an average
response of 5.5 for both questions.

Finally, students were asked if they thought they were creative
and if they liked when their classes let them be creative. Students,
once again, had fairly positive responses with the average response
of 5.75 for both questions related to creativity (all responses were
>= 4). This further supports the idea of using creativity to engage
a broader range of students in CS.

Research Question 3: Does student interest in CS increase after
completing the course?

Although we did give pre and post surveys, only three students
of the seven total were present for both the pre-survey and post-
survey. For each of the three students, they showed very positive
responses in the post-survey, with each student improving their
perspective on both considering a career in computing and con-
tinuing with learning computer programming. The results for the
three students, when asked on a 7-point Likert scale if they would
consider a career in CS and like to learn (or continue to learn) com-
puter programming, can be seen in table 1.

Pre-Course Surveys Post-Course Surveys

Consider CS Career Consider CS Career

student 1 6 7

student 2 4 7

student 3 6 7

want to learn CS want to learn CS

student 1 7 7

student 2 6 7

student 3 4 7

Table 1: Comparison of Pre and Post Surveys for the Stu-
dents Who Took Both (Other Students Joined Late or Left
Early) (Seven-Point Likert Scale)

4.2 Qualitative Results
When exploring the research questions qualitatively, we found
positive results as well. Overall, everyone involved - the students’
usual teacher, the students, and the volunteers - reported the class
as being a positive experience. The teacher was excited to have his
students interacting with college students and hopes to continue
this course in the future, as well as have other students from other
majors teach.

4.2.1 Positive Student Engagement. The students all seemed to
enjoy the class, as we had positive experiences with every student
despite their initial levels of interest in the subject. For example,
one student showed very little interest at first and wondered why

he had to take the class as he already had chosen a career path
outside of computer science; however, by the end of the course,
although he still did not want to pursue computer science as a
career, he was one of the most engaged students, working until the
very end of class on the last day. He took initiative with his work,
researching new commands and coming up with out-of-the-box
ideas we had not taught. He even learned how to add lives and a
high score counter on the last day, although this was outside of the
scope of the class lectures. Overall, even though he does not wish
to pursue this career path, he reported he would like to continue
learning computer programming.

In addition, all students showed signs of having pride and excite-
ment in their work. The last day, we gave students the option to
demo their game to the class. While the students declined to demo
in front of the class, every student, during the last class period and
also throughout the previous classes, demonstrated their games to
each other in one-on-one settings. The students would regularly
and excitedly call the teacher, the volunteers, the guards, and each
other over to their tables to show off new elements they had added
to their games.

4.2.2 Benefits from Course Flexibility and Tutoring Style Work Pe-
riods. We found flexible curriculum and tutoring-centered work
periods helpful in this class setting. Flexible game goals and having
many opportunities for one-on-one help allowed the students to
focus on the areas of the game they were most interested in, while
less interested students still had basic, functioning games by the
end of the course. One student, for example, was most interested
in the artistic and design aspects of making a game. Although he
did not pick up complex coding concepts as fast as some students,
he worked very hard and stayed focused on his work. He was the
only student who asked if he could change the default backgrounds
given to him and spent much of his time perfecting it. A screen-shot
of his game is included in Figure 2.

Figure 2: Screenshot of Student’s Game.

In addition, we still found the class to be a positive experience
for students joining late. In Juvenile Hall, it is very common for
attendance to fluctuate. Students who joined the course halfway
through were given base code and able to integrate into the class.
They were given extra help from tutors and other students and were
able to complete a game by the end. However, one student showed

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

238

up so near the end, we were unable to teach him how to make a
functioning game. For this student, we taught him the basic draw
commands and had him make static drawings with Processing. By
the end of the class, he reported that, although it seemed difficult,
he liked programming and would want to continue to learn.

4.3 Threats to Validity
At this time, we are presenting our experience with introducing
a computer programming course to incarcerated youth. Overall,
the experience was a highly positive one. We present information
gained in our pre and post surveys, but acknowledge that the sample
size of this data is very small. There were only a total of seven
students who participated in the course throughout the lessons.
This means our survey results are not strong forms of evidence
nor are they statistically significant. Furthermore, only three of
the students took both the pre and post surveys for comparison.
However, the focus of this study was not quantitative results. The
value was in pioneering a new course and making the connections
to make it sustainable. Future work could include a heavier focus
on quantitative analysis once this course is more established.

Another potential threat to validity was unexpectedly meeting
the students prior to the first day of class. Though it was helpful to
meet them and introduce the course topic prior to the first lesson,
this was an unplanned event and potentially inflated student re-
sponses on the pre-survey; by the time we gave them the pre-survey
asking their opinions on computer science, they had already been
informed of some benefits of computer science to prep them for
the first day of class. However, although skewing the data, meeting
the students early was beneficial and made the first class easier.

Finally, although we instructed the students to keep the pre and
post surveys anonymous, some students wrote their name on the
post-survey. Since they chose to disclose their name, they may not
have answered as honestly.

5 CONCLUSION AND FUTUREWORKS
In summary, we have presented our experience report on creating
and teaching an introductory CS course for incarcerated youth.
This course attempted to empower students that previously did not
have access to any computing courses through a creative, project-
based curriculum. We designed our class around 2D game design,
with an emphasis on creativity, course flexibility, and tutoring-style
work sessions. We found the course to have initial success, as all
students reported enjoying the class and a desire to continue to
learn computer programming. The students also reported liking
the game design aspect of the course and stated that they wished
the course was longer.

For anyone considering a similar course and likewise for our
future courses at Juvenile Hall, it is essential to plan early, plan
for flexibility, and have lots of volunteers. We found it was very
beneficial to incorporate multiple subjects to adapt to different
students’ course requirement needs. We also found an effective
class setup to be a short lecture followed by a short assignment.
Students expressed that they wished the class was longer than five
weeks, so future iterations we plan to expand the course to allow
students more time to work with computing concepts and project
creation.

Although this initial course offering was successful, we plan
a more vigorous study over time to experimentally validate our
initial findings. For example, while we intentionally incorporated
creativity into the curriculum, we were not able to specifically
investigate the effects of varying degrees of creativity, i.e. we cannot
assert how important the creative components of our curriculum
were.

ACKNOWLEDGMENTS
To Restorative Partners, whose work has changed the lives of many
and made our work possible as well. To the local teacher and staff at
Juvenile hall who were also essential for this program. To Timothy
Wong and Erik Mork for being wonderful tutors.

REFERENCES
[1] Albert Bandura and Dale H. Schunk. 1981. Cultivating competence,

self-efficacy, and intrinsic interest through proximal self-motivation.
Journal of Personality and Social Psychology 41, 3 (1981), 586 – 598.
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&
db=pdh&AN=1982-07527-001&site=ehost-live

[2] Kapor Center and the Computer Science for California (CSforCA) coalition. [n.d.].
Computer Science In California’s Schools: An Analysis of Access, Enrollment,
and Equity. Accessed: 2019-15-08.

[3] LaVar J. Charleston, Phillis L. George, Jerlando F. L. Jackson, Jonathan Berhanu,
and Mauriell H. Amechi. 2014. Navigating underrepresented STEM spaces:
Experiences of Black women in US computing science higher education programs
who actualize success. Journal of Diversity in Higher Education 7, 3 (2014), 166
– 176. http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=
true&db=pdh&AN=2014-37844-002&site=ehost-live

[4] Sapna Cheryan, Victoria C. Plaut, Paul G. Davies, and Claude M. Steele. 2009.
Ambient belonging: How stereotypical cues impact gender participation in com-
puter science. Journal of Personality and Social Psychology 97, 6 (2009), 1045 –
1060. http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=
true&db=pdh&AN=2009-22579-003&site=ehost-live

[5] Sapna Cheryan, Sianna A. Ziegler, Amanda K. Montoya, and Lily Jiang. 2017.
Why are some STEM fields more gender balanced than others?. Psychological
Bulletin 143, 1 (2017), 1 – 35. http://search.ebscohost.com.ezproxy.lib.calpoly.
edu/login.aspx?direct=true&db=pdh&AN=2016-48466-001&site=ehost-live

[6] K-12 Computer Science Framework Steering Committee. 2016. K-12 Computer
Science Framework. Technical Report. New York, NY, USA.

[7] Katie M. Davis, Zoë Wood, and John Wilcox. 2016. Eighteen Hours of Code with
Fifth Grade Students (Abstract Only). In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE ’16). ACM, New York, NY,
USA, 694–694. https://doi.org/10.1145/2839509.2850554

[8] Jessica Q. Dawson, Meghan Allen, Alice Campbell, and Anasazi Valair. 2018.
Designing an Introductory Programming Course to Improve Non-Majors’ Ex-
periences. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE ’18). ACM, New York, NY, USA, 26–31. https:
//doi.org/10.1145/3159450.3159548

[9] Alexandria K. Hansen, Hilary A. Dwyer, Ashley Iveland, Mia Talesfore, Lacy
Wright, Danielle B. Harlow, and Diana Franklin. 2017. Assessing Children’s
Understanding of the Work of Computer Scientists: The Draw-a-Computer-
Scientist Test. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA, 279–284.
https://doi.org/10.1145/3017680.3017769

[10] Alexandria K. Hansen, Ashley Iveland, Cameron Carlin, Danielle B. Harlow,
and Diana Franklin. 2016. User-Centered Design in Block-Based Programming:
Developmental & Pedagogical Considerations for Children. In Proceedings of the
The 15th International Conference on Interaction Design and Children (IDC ’16).
ACM, New York, NY, USA, 147–156. https://doi.org/10.1145/2930674.2930699

[11] Päivi Kinnunen and Lauri Malmi. 2008. CS Minors in a CS1 Course. In Proceedings
of the Fourth International Workshop on Computing Education Research (ICER ’08).
ACM, New York, NY, USA, 79–90. https://doi.org/10.1145/1404520.1404529

[12] Ahmad M. Mahasneh and Ahmed F. Alwan. 2018. The Effect of Project-Based
Learning on Student Teacher Self-Efficacy andAchievement. International Journal
of Instruction 11, 3 (2018), 511 – 524. http://search.ebscohost.com.ezproxy.lib.
calpoly.edu/login.aspx?direct=true&db=eric&AN=EJ1183424&site=ehost-live

[13] Allison Master, Sapna Cheryan, and Andrew N. Meltzoff. 2016. Computing
whether she belongs: Stereotypes undermine girlsâĂŹ interest and sense of be-
longing in computer science. Journal of Educational Psychology 108, 3 (2016), 424
– 437. http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=
true&db=pdh&AN=2015-37516-001&site=ehost-live

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

239

http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=1982-07527-001&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=1982-07527-001&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2014-37844-002&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2014-37844-002&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2009-22579-003&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2009-22579-003&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2016-48466-001&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2016-48466-001&site=ehost-live
https://doi.org/10.1145/2839509.2850554
https://doi.org/10.1145/3159450.3159548
https://doi.org/10.1145/3159450.3159548
https://doi.org/10.1145/3017680.3017769
https://doi.org/10.1145/2930674.2930699
https://doi.org/10.1145/1404520.1404529
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=eric&AN=EJ1183424&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=eric&AN=EJ1183424&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2015-37516-001&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2015-37516-001&site=ehost-live

[14] Theresa Anne Migler-VonDollen and Lizabeth T Schlemer. 2018. Engagement in
Practice: Teaching Introductory Computer Programming at County Jails. In 2018
ASEE Annual Conference & Exposition. ASEE Conferences, Salt Lake City, Utah.

[15] Laurie T. O’Brien, Donna M. Garcia, Alison Blodorn, Glenn Adams, Elliott Ham-
mer, and Claire Gravelin. 2019. An educational intervention to improve women’s
academic STEM outcomes: Divergent effects on well-represented vs underrep-
resented minority women. Cultural Diversity and Ethnic Minority Psychology
(2019). http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=
true&db=pdh&AN=2019-22448-001&site=ehost-live

[16] David Reed. 2001. Rethinking CS0 with JavaScript. SIGCSE Bull. 33, 1 (Feb. 2001),
100–104. https://doi.org/10.1145/366413.364552

[17] William Robinson. 2016. From Scratch to Patch: Easing the Blocks-Text Tran-
sition. In Proceedings of the 11th Workshop in Primary and Secondary Com-
puting Education (WiPSCE ’16). ACM, New York, NY, USA, 96–99. https:
//doi.org/10.1145/2978249.2978265

[18] Elizabeth Schofield, Michael Erlinger, and Zachary Dodds. 2014. MyCS: CS
for Middle-years Students and Their Teachers. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education (SIGCSE ’14). ACM, New
York, NY, USA, 337–342. https://doi.org/10.1145/2538862.2538901

[19] Zoë Wood. [n.d.]. Fifth grade Introduction to Computer programming using Pro-
cessing - PCS. http://users.csc.calpoly.edu/~zwood/Outreach/PCS.html. Accessed:

2019-02-08.
[20] Zoë J. Wood, John Clements, Zachary Peterson, David S. Janzen, Hugh Smith,

Michael Haungs, Julie Workman, John Bellardo, and Bruce DeBruhl. 2018. Mixed
Approaches to CS0: Exploring Topic and Pedagogy Variance after Six Years of
CS0. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, SIGCSE 2018, Baltimore, MD, USA, February 21-24, 2018. 20–25. https:
//doi.org/10.1145/3159450.3159592

[21] Zoë J. Wood, Paul Muhl, and Katelyn Hicks. 2016. Computational Art: Introducing
High School Students to Computing via Art. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, Memphis, TN, USA, March
02 - 05, 2016. 261–266. https://doi.org/10.1145/2839509.2844614

[22] Dianna Xu, Aaron Cadle, Darby Thompson, Ursula Wolz, Ira Greenberg, and
Deepak Kumar. 2016. Creative Computation in High School. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16).
ACM, New York, NY, USA, 273–278. https://doi.org/10.1145/2839509.2844611

[23] Sarita Yardi and Amy Bruckman. 2007. What is Computing?: Bridging the
Gap Between Teenagers’ Perceptions and Graduate Students’ Experiences. In
Proceedings of the Third International Workshop on Computing Education Research
(ICER ’07). ACM, New York, NY, USA, 39–50. https://doi.org/10.1145/1288580.
1288586

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

240

http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2019-22448-001&site=ehost-live
http://search.ebscohost.com.ezproxy.lib.calpoly.edu/login.aspx?direct=true&db=pdh&AN=2019-22448-001&site=ehost-live
https://doi.org/10.1145/366413.364552
https://doi.org/10.1145/2978249.2978265
https://doi.org/10.1145/2978249.2978265
https://doi.org/10.1145/2538862.2538901
http://users.csc.calpoly.edu/~zwood/Outreach/PCS.html
https://doi.org/10.1145/3159450.3159592
https://doi.org/10.1145/3159450.3159592
https://doi.org/10.1145/2839509.2844614
https://doi.org/10.1145/2839509.2844611
https://doi.org/10.1145/1288580.1288586
https://doi.org/10.1145/1288580.1288586

	Abstract
	1 Introduction
	2 Setting
	3 The Curriculum
	3.1 Curricular Design
	3.2 Lessons
	3.3 Challenges and Considerations

	4 Validation
	4.1 Quantitative Results
	4.2 Qualitative Results
	4.3 Threats to Validity

	5 Conclusion and Future Works
	Acknowledgments
	References

